Reducing Emissions from Open Burning: Overview of US Agricultural Burning & Smoke Management

Alison C. Simcox, PhD
U.S. Environmental Protection Agency
Region 1, Air and Radiation Division

EANET Fourth Asia Pacific Clean Air Partnership (APCAP) Joint Forum
Suwon, Republic of Korea
5 - 7 September 2022

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises.
Overview of U.S. Burning of Agricultural Burning & Smoke Management

• US cropland practices: past and present
• Who controls cropland burning?
• US EPA Smoke Management Role
• Components of a Smoke Management Plan
• Estimating PM emissions from agricultural burning
• Why burn crop residues?
• Alternatives to burning
US Cropland Practices: Past

“Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution” - Viney Aneja, NC State U

• 1940s-1990s: growth of “intensive agriculture”
• Abandonment of traditional practices (fallowing and crop rotations) in favor of mechanization
• Better pesticides and increased use of nitrogen fertilizers
• Cultivation of marginal land
• Availability of hybrid and genetically modified crop varieties
• Improvements in production efficiency; increased field size; concentrated production; less people employed
• Government policies encouraged intensification; magnified by commercial factors
The US has 166 million hectares (~410 million acres) of net cropland area.

Ranked second in the world after India, which has 180 million hectares of cropland.

https://www.usgs.gov/media/images/map-croplands-united-states#:~:text=The%20United%20States%20has%20166,180%20million%20hectares%20of%20croplands.
US Cropland

• Croplands: Crop areas that produce food, fiber, and seeds
• Main crops: barley, corn, cotton, oats, peanuts, rice, sorghum, soybeans, wheat (other: bluegrass, sugarcane, soy, etc.)
• Each year, between 300 to 400 million acres are harvested, with burning done on 1-3% of this land, mostly in Southeast, Great Plains, and Pacific Northwest

https://www.usda.gov/topics/farming/crop-production
https://www.nass.usda.gov/Charts_and_Maps/Crops_County/
Recent changes in conservation practices

- Between farmer surveys in 2003–06 (CEAP I) and in 2013–16 (CEAP II), there has been a warming climate, longer growing season, advances in seed technology, and higher yielding crop varieties.
- Demand for commodities increased, particularly corn and soybeans, and higher prices encouraged production expansion.
- Farmers have increasingly adopted advanced technology, including enhanced-efficiency fertilizers and variable-rate fertilization.
- More efficient conservation tillage systems, particularly no-till, became the dominant form of tillage, reducing erosion and fuel use.
- Conservation crop rotation and cover crop use increased, as did the use of high-biomass crops in rotation.
- Irrigators shifted toward more efficient pressure-based systems, and improved water management strategies decreased per-acre water application rates.

Conservation Practices on Cultivated Cropland

Estimating crop residue/rangeland burning

- In the 2011 National Emissions Inventory, wildland fires, prescribed fires, and crop-residue burning were the largest source of PM$_{2.5}$... however, crop-residue burning has been poorly characterized.
- Main problem: variability between states that submitted data due to use of different methodologies to estimate emission factors and area burned.
- Newer approach: estimate emissions from crop-residue and grass/pasture burning using satellite and field data as well as crop-specific emission factors.

- NOAA’s Hazard Mapping System (HMS) product, the USDA Cropland Data Layer (CDL) (https://nassgeodata.gmu.edu/CropScape/) was used to identify crop type and distinguish agricultural fires from all other fires.
- Satellite detections are at best known to 100 m and the CDL information is known to 30-m resolution, the process of intersecting these two data sets results in some uncertainty with respect to spatial accuracy of the fire locations.

Estimation of 2014 emission inventory for crop residue burning and rangeland burning https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088810/
• PM$_{2.5}$ emissions from burning of crop residue and rangeland occur mainly in California, Kansas, Oklahoma, and parts of the SE US, lower Mississippi Valley, Pacific NW.

• Total US estimate of area burned annually: 1,542,280 acres
US PM$_{2.5}$ and BC emissions by source category

Source: US EPA March 2012 Report to Congress on Black Carbon
Who Controls Cropland Burning in the US?

- Federal (US Department of Agriculture, US Forest Service, and US EPA), State, and local agencies
- Centerpiece of USDA “Agricultural Burning Policy” is recommendation that States/Tribes adopt a Smoke Management Program/Plan (SMP)
- US EPA authority is Title I of Clean Air Act
 - Sets national ambient air quality standards (NAAQSs) for "criteria pollutants" (CO, Pb, NO₂, PM/PM₂.₅, ozone, SO₂)
 - Areas that meet standard = “attainment areas”
 - Areas that don't meet standard = “nonattainment areas”
Role of US EPA in Smoke Management

• EPA concern for controlling smoke is greater for nonattainment areas and areas in or near Class I Federal areas (national parks, wilderness areas)

• EPA:
 • Facilitates cooperation among burners, regulators and public
 • Provides support for State/Tribal Smoke Management Programs (guidance, reviews, funding)
 • Provides technical support (modeling, forecasting tools)
 • Conducts Smoke Management meetings
 • Keeps parties informed about policy issues such as Wildland Fire Policy, Exceptional Events, Regional Haze, air-quality standards (NAAQS).

• EPA encourages State and tribal air-quality managers to develop a Smoke Management Program (SMP): Framework of requirements and procedures for managing smoke from prescribed fires, typically developed by States or Tribes with cooperation from stakeholders.
Smoke Management Program (SMP) Components

- **Process for assessing and authorizing burns**: recommended reporting of burn-plan information to administering agency
- **Plan for minimizing emissions and impacts**: promotion of alternatives to burning and use of emission-reduction techniques
- **Smoke management goals and procedures**: actions to minimize fire emissions, evaluate smoke dispersion, notify public and reduce public exposure, monitor air quality
- **Public education and awareness**
- **Surveillance and enforcement of SMP compliance**
- **Program evaluation and plan for periodic review**
- **Optional programs (e.g., special protection zones or buffers)**

Considerations when planning to burn

- Expected emissions and airshed capacity
- Proximity to other burns
- Moisture content of fuels
- Distance from Sensitive Populations & Critical Infrastructure (schools, hospitals, highways, airports)
- Meteorology
 - Mixing height (need profiles of atmospheric parameters from a remote-sensing system from ground to 1 mile or so)
 - Surface wind speed (>3mph, <15mph)
 - Ventilation (or clearing) Index (*see next slide*)
 - Cloud cover and Relative Humidity
 - Surface wind direction (away from sensitive receptors)
Ventilation Index (VI) or Rate

- VI (or ventilation rate or clearing index) is the US National Weather Service's indicator of the relative degree of air circulation for a specified area (potential for smoke or other pollutants to ventilate away from a source).
- Used by fire managers as diagnostic tool to assess potential for dispersion of smoke from fires.
- Ventilation Rate = Transport Wind (kts) x Mixing Height (ft) (#kts x 1.15 = mph; #mph x 0.87 = knots)
 - Higher values indicate faster dispersion of PM generated by fires.
 - Transport wind: average wind over a specified time period within a mixed layer near Earth's surface.
 - Mixing height: height to which parcel of air, or column of smoke, will rise, mix or disperse. A column of smoke will remain trapped below this height.

![Smoke Dispersal Chart](image1)

![Ventilation Rate Chart](image2)

https://www.weather.gov/riw/fire_smoke_dispersal
Example: Arizona DEQ

- Acres to be treated?
- Acres lined? (to stop burn from exceeding acreage)
- Multiple or consecutive day burn?
- Expected daytime smoke?
- Expected diurnal smoke behavior?
- Expected impact on Sensitive Areas?
- Amount fuel expected to burn?
- Likely to be a lot of smoldering?

REMINDER: All burn requests are due by 2 pm the business day BEFORE your planned ignition day. Burn requests for Saturday, Sunday, and Monday are due by 2 pm Friday.
To see current particulate levels, visit ADEQ's Portable Particulate Monitors page
To file an official smoke complaint, you can access the complaint forms here

Approved Daily Burns Today is 2022-08-23

<table>
<thead>
<tr>
<th>Burn Number</th>
<th>Burn Name</th>
<th>Ignition Date</th>
<th>Approved Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXH1502P</td>
<td>Fort Piles 20</td>
<td>2022-08-23</td>
<td>20</td>
</tr>
</tbody>
</table>
Air-quality monitoring

EPA’s AirData

https://www.epa.gov/outdoor-air-quality-data
(with interactive map)
Air-quality forecasting

US EPA: daily and air-quality forecasts
https://www.airnow.gov

National Oceanic and Atmospheric Administration (NOAA):
http://airquality.weather.gov
Six regional climate centers in US since 1989

https://www.ncei.noaa.gov/regional/regional-climate-centers
Estimating agricultural burning emissions

Method of estimating crop-residue burning emissions using remote-sensing data and field information

1. Located fires using multiple satellite detections via NOAA Hazard Mapping System (HMS), which shows hot spots and smoke plumes indicative of fire locations.
2. Identified type of crop (residue) being burned by using a year-specific crop map. Assigned an emission factor accordingly.
3. Looked at season (spring and fall) as well as annual changes in crop land use.
4. Estimated field size (i.e., acres burned) based on state-specific field-size information.

https://www.tandfonline.com/doi/full/10.3155/1047-3289.61.1.22
https://www.researchgate.net/publication/49821771_Remote_Sensing-Based_Estimates_of_Annual_and_Seasonal_Emissions_from_Crop_Residue_Burning_in_the_Contiguous_United_States
https://gaftp.epa.gov/Air/nei/ei_conference/EI20/session2/jmccarty.pdf (fuel loading)
US: NOAA Hazard Mapping System

https://www.ospo.noaa.gov/Products/land/hms.html#maps
Estimating agricultural burning emissions

Calculate emissions:
Emission factor = representative value relating quantity of pollutant released to atmosphere with activity associated with that release
Emissions (E) = Area Burned x Combustion Completeness x Emission Factor x Fuel Loading

https://www3.epa.gov/ttnchie1/conference/ei20/session1/gpouliot.pdf
Average annual PM$_{2.5}$ emissions from crop residue burning by county

Calculate emissions:
E = area burned * combustion completeness * Emission Factor * Fuel Loading

Source: McCarty, 2011
Global Data: NASA’s Earth Observing System Data & Information System (EOSDIS): Active Fire Data

https://firms.modaps.eosdis.nasa.gov/map/#d:24hrs;@-4.4,-3.2,3z
Emission Factors (PM$_{2.5}$ lbs/ton)

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Fuel Loading (tons/acre)</th>
<th>Combustion Completeness</th>
<th>PM2.5 (lbs/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky bluegrass</td>
<td>2.91</td>
<td>0.85</td>
<td>23.23</td>
</tr>
<tr>
<td>Corn</td>
<td>4.19</td>
<td>0.75</td>
<td>9.94</td>
</tr>
<tr>
<td>Cotton</td>
<td>1.70</td>
<td>0.65</td>
<td>12.38</td>
</tr>
<tr>
<td>Rice</td>
<td>2.99</td>
<td>0.75</td>
<td>4.72</td>
</tr>
<tr>
<td>Soybean</td>
<td>2.50</td>
<td>0.75</td>
<td>12.38</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>4.46</td>
<td>0.65</td>
<td>8.69</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.92</td>
<td>0.85</td>
<td>8.07</td>
</tr>
<tr>
<td>Other/fallow/legumes</td>
<td>2.95</td>
<td>0.75</td>
<td>12.31</td>
</tr>
</tbody>
</table>

Factors derived from McCarty (2011). PM$_{2.5}$ adjusted based on consistent PM$_{2.5}$/PM$_{10}$ ratios applied to PM$_{10}$ factors.
Public Education and Awareness

• Identify communities at risk (e.g., by using satellite-based methods)
• Develop public-health communication on health effects and actions to limit exposure to smoke (e.g., PSAs, social-media)
• Coordinate messages with local groups that are allowing agricultural burning
• Messages/Actions may include:
 • Use of a “visibility index” (e.g., Oregon’s 5-3-1 Index: visibility >5 miles good, under 1 mile unhealthy
 • Avoid activities that increase indoor or outdoor pollution (e.g., fireplaces, cook stoves, smoking, painting, diesel/gasoline equipment)
 • Reduce or delay outdoor physical activities
 • Do not rely on dust masks. Paper “comfort” or “dust” masks trap large particles, but do not provide protection from PM$_{2.5}$. Need HEPA filters
 • Consider evacuating from path of fires
But why burn crop residues?

Crop-residue burning is an inexpensive and effective method to remove excessive residue to facilitate timely planting and to control pests and weeds.

However ...

- Burning often destroys humus (organic matter) and soil structure, and destroys a potential resource – the residues
- Burning reduces water retention and soil fertility by 25-30%, and thus requires farmers to invest in expensive fertilizers and irrigation systems to compensate.
- Without residue on soil surface, the ground is susceptible to erosion.
- PM and black carbon (BC) emissions impact local and regional air quality and visibility, and contribute to climate change (e.g., CO₂ and BC emissions, deposition of BC on snow and ice)
- Question of long-term sustainability
 - Prolonged burning (>15 years) results in significant loss of soil health and function (and nutrients - see next slide)

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1800&context=extension_curall
Benefits of not burning

• Improves air quality
• Promotes healthy soils. Crop residue:
 - Provide protective layer against soil erosion by wind or water
 - Increases organic matter and water-holding capacity of soil
 - Provides “feed and forage” for earth worms.
• Short-term benefits to burning (ease of tillage, seeding, weed and pest control, cost-savings) are lost in long term to reduction in soil health (microbial activity, carbon and nitrogen pools, soil physical conditions) that cannot be overcome by adding fertilizer.
• Creates new markets for agricultural residues
• Climate benefits:
 - During dry periods: greater moisture retention as seeding occurs through non-plowed stubble
 - During heavy rains: decreased erosion because remaining stubble holds soil in place
 - Fixes more soil carbon

Nutrients lost burning 2,000 lbs of wheat straw

<table>
<thead>
<tr>
<th>Nutrients present in 2,000 lbs of wheat straw</th>
<th>Element/Nutrient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>22 lbs</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>6.2 lbs</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>3.5 lbs</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>2.2 lbs</td>
</tr>
<tr>
<td></td>
<td>Carbon</td>
<td>826 lbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrients lost in burn</th>
<th>Element/Nutrient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>22 lbs</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.7 lbs</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.6 lbs</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1.5 lbs</td>
</tr>
<tr>
<td></td>
<td>Carbon</td>
<td>749 lbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Loss</th>
<th>Element/Nutrient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>91%</td>
<td></td>
</tr>
</tbody>
</table>

Value of lost fertilizer and straw	N @ $0.60/lb	$12.96
	P @ $0.50/lb	$0.35
	K @ $0.52/lb	$0.31
	S @ $0.91/lb	$1.37
Straw $/ton	$40.00	
Total	$54.99	

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1800&context=extension_curall
https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1365&context=extension_extra
Alternatives to burning

• Chipping/grinding/shredding
• Use residue for animal bedding
• Use residue for ground cover (conservation agriculture)
• Low-Till: use machinery to incorporate/mix crop residue into soil
• No Till/Strip Till/Direct Seed: planting done through residues of previous plantings and weeds*
• Use chemicals to breakdown residue
• Remove by baling (e.g., grasses, winter wheat) and deliver to biomass plants. Can also use wood residue and animal waste as biomass fuels
• Mulching (spread across top of soil as protective cover and to prevent weeds)
• Composting (used beneath top layer of soil (feeds plants through their roots)
 *Note controversy about increased use of herbicides for no-till farming

https://www.epa.gov/afos-air/agricultural-air-quality-conservation-measures-reference-guide-cropping-systems-and
Drivers, effects and solutions to crop residue burning

No-till agricultural practices

• No-till farming methods result in low soil disturbance.
• With conventional plowing, the top layer is turned over before seeding. Tillage helps to aerate soil, incorporate manure and fertilizers, loosen earth for future fragile seedling roots, destroy pests, eradicate weeds.
 • Conventional plowing promotes soil erosion, removes cover matter, causes an imbalance in micro-communities, and releases soil carbon into the air, contributing to the greenhouse effect.
• No-till farming requires special equipment (disc seeders or agriculture drills) to make furrows, immediately plant seeds, firm them, and cover.
• But weeds are not destroyed by these mechanical methods. Therefore, farmers cover interrows with straw, dry hay, or mulches, which suppresses weeds due to lack of light and accumulates moisture and protects plant roots from sun.

https://eos.com/blog/no-till-farming/
US examples of no-till farming

https://www.youtube.com/watch?v=pf0WJy5KzVQ
Asian example of no-till farming: Happy Seeder

• “Happy Seeder” developed by Punjab Agricultural University PAU in collaboration with Australian Centre for International Agricultural Research (ACIAR)
• From 2019 – 2020, the Harnessing the power of Agricultural Residues through Innovative Technologies (HARIT) Initiative
• Supported 84 villages across 21 blocks in 7 districts of Punjab and Haryana
• Conducted field demonstrations with 83 Happy Seeders on 4,048 hectares of land.
• About 80% of farmers in Reviving Green Revolution (RGR) pilot villages did not burn crop residue and used alternate practices including use of Happy Seeder and zero tillage for sowing wheat

Potential uses of straw residue

<table>
<thead>
<tr>
<th>Agricultural sector</th>
<th>Manufacturing industries</th>
<th>Construction sector</th>
<th>Renewable energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost</td>
<td>Paper making</td>
<td>Building material</td>
<td>Biofuel</td>
</tr>
<tr>
<td>Vermicompost</td>
<td>Food packaging</td>
<td>Thermal insulation</td>
<td>(ethanol)</td>
</tr>
<tr>
<td>Nursery mats</td>
<td>Activated carbon materials</td>
<td>Erosion control</td>
<td>Electricity</td>
</tr>
<tr>
<td>Mulching</td>
<td>Pyroligneous acid</td>
<td>Grass growth medium</td>
<td>Biogas</td>
</tr>
<tr>
<td>Mushroom growth medium</td>
<td></td>
<td>Land reclamation</td>
<td>(domestic uses)</td>
</tr>
<tr>
<td>Livestock feed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal bedding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thatching</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Park et al., 2014; Qian et al., 2014; Department of Science, Technology and Environment, 2013; Kanokkanjana & Garivait, 2013; Nguyen et al., 2013; Thapat & Gheewala, 2013; Delivand et al., 2012; Indian Agricultural Research Institute, 2012; Li et al., 2012; Liu et al., 2010; Lal, 2005; Devendra & Sevilla, 2002; MADA, 2004.
<table>
<thead>
<tr>
<th>Country</th>
<th>Rice straw utilization</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>Livestock feed, compost, biogas</td>
<td>74.4</td>
</tr>
<tr>
<td>Korea</td>
<td>Compost</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>Livestock feed</td>
<td>15.0</td>
</tr>
<tr>
<td>Thailand</td>
<td>Livestock feed</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>Compost</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Raw material (cell)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Others activities</td>
<td>0.3</td>
</tr>
<tr>
<td>China</td>
<td>Rural energy (electricity)</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>Livestock feed</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>Fertilizer</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>Paper matting</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Reused on the farm and collected for other purposes</td>
<td>16.2</td>
</tr>
<tr>
<td>Japan</td>
<td>Livestock feed</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Compost</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>Animal bedding</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Combustion</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>Erosion control</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Mulching</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Incinerator</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Handicraft</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Processed</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Other activities</td>
<td>0.3</td>
</tr>
<tr>
<td>India</td>
<td>Biogas</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>Other activities (livestock: feed and roof)</td>
<td>49.0</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Compos</td>
<td>56.9</td>
</tr>
<tr>
<td></td>
<td>Livestock feed</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>Biofuel</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Other activities</td>
<td>22.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>Livestock feed, mulching, mushroom growth medium</td>
<td>5.0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Livestock feed, compost, erosion control, mushroom growth medium, paper matling</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Source: Devendra, 1989; Gdzie et al., 2009; MADA, 2010; Matsunaga et al., 2005; Su, 2009; Liu et al., 2010; Devendra & Sevilla, 2002; Li et al., 2012
Example: Repurposing rice straw in California

- Rice straw used for wattles would otherwise go into California landfills.
- Staked fiber rolls being used for erosion control on slopes of hillsides.

Examples of State Smoke Management/Crop Residue Programs

- Idaho Department of Environmental Quality (DEQ) https://www.deq.idaho.gov/air-quality/smoke-and-burning/
- California Air Resources Board https://ww2.arb.ca.gov/smoke-management-programs-and-burn-decisions-other-air-districts
- Nevada Division of Environmental Protection https://ndep.nv.gov/air/air-pollutants/smoke-management
- Washington Department of Natural Resources https://www.dnr.wa.gov/publications/rp_burn_smptoc.pdf
References

- **California Environmental Protection Agency Air Resources Board**, 1995, The Economic Impacts of Alternatives To Crop Residue Burning, Research Note 95-16
 https://www.arb.ca.gov/research/resnotes/notes/95-16.htm
- Holmgren et al., 2014, Economic and Soil Quality Impacts from Crop/Rangeland Residue Burning, Utah State University Extension Factsheet
 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1800&context=extension_curall
doi: 10.1016/j.envres.2014.10.015
References (cont.)

• Rosmiza MZ et al., 2014, Farmers’ knowledge on potential uses of rice straw: An assessment in MADA and Sekinchan, Malaysia, Malaysian Journal of Society and Space 10 issue 5 (pp 30-43) (email: miza@ukm.edu.my)

US EPA Contacts

Southeast Asia – Air Improvements in the Region (SSEA-AIR)

Alison Simcox, PhD (Region 1)
 simcox.alison@epa.gov
Justin Spenillo (Region 10)
 spenillo.justin@epa.gov
Gina Bonifacino (Region 10)
 bonifacino.gina@epa.gov

Office of Internation & Tribal Affaires

Daniel Lee
 lee.daniel@epa.gov
Team Chen
 chen.team@epa.gov