Acid Deposition Monitoring Network in East Asia (EANET)

Report of the Inter-laboratory Comparison Project 2016

19th Inter-laboratory Comparison Project on Wet Deposition
12th Inter-laboratory Comparison Project on Dry Deposition
18th Inter-laboratory Comparison Project on Soil
17th Inter-laboratory Comparison Project
on Inland Aquatic Environment

December 2017
Network Center for EANET

Contents

1.	INTRODUCTION	
2	19 th INTER-LABORATORY COMPARISO	
2.		N WET DEPOSITION
	2.1 Introduction	
	2.2 Procedures	
	2.3 Results	
	2.4 Comparison with past surveys	
	2.5 Recommendations for improvement	
	References	
	Appendix 2.1	
	Appendix 2.2	
	Appendix 2.3	
	Appendix 2.4	
	3.1 Introduction3.2 Procedures3.3 Results3.4 Comparison with past surveysReferences	
4.	18 th INTER-LABORATORY COMPARISO 4.1 Introduction 4.2 Procedures 4.3 Results 4.4 Needs for improvement of soil analysis 4.5 Recommendations	ON PROJECT ON SOIL
	References	
	Appendix 4.1	
	Appendix 4.2	

5.	17 th INTER-LABORATORY COMPARIS	ON PROJECT	
	ON INLAND	AQUATIC ENVIRONMENT	87
	5.1 Introduction		87
	5.2 Procedures		87
	5.3 Results		91
	5.4 Comparison with past surveys		106
	5.5 Recommendations for improvement		109
	References		111
	Appendix 5.1		112
	Appendix 5.2		113
6.	ACKNOWLEDGEMENT		115
7.	CONTACT INFORMATION		115

1. INTRODUCTION

The Inter-laboratory Comparison Project was conducted among the analytical laboratories in participating countries of the Acid Deposition Monitoring Network in East Asia (EANET), based on the quality assurance / quality control (QA/QC) programs of EANET.

The objectives of this project are, through the evaluation of analytical results, analytical equipment and its operating condition and other practices,

- (i) to recognize the analytical precision and accuracy of the measurement in each participating laboratory,
- (ii) to give further opportunities to improve the quality of the analysis on wet deposition, dry deposition (filter pack method), soil and inland aquatic monitoring of EANET,
- (iii) to improve reliability of analytical data through the assessment of suitable analytical methods and techniques.

The Inter-laboratory Comparison Project is implemented by the Network Center (NC) of EANET annually for the following items:

- a. wet deposition
- b. dry deposition
- c. soil
- d. inland aquatic environment

This report presented the results of the 19th Inter-laboratory Comparison Project on wet deposition, 12th Inter-laboratory Comparison Project on dry deposition, 18th Inter-laboratory Comparison Project on soil, and 17th Inter-laboratory Comparison Project on inland aquatic environment.

The number of participating laboratories from each country by project is shown in Figure 1.1.

Table 1.1 shows the name and code of participating laboratories and data submission status. A check-mark(✔) indicates the analytical results were submitted by individual laboratories.

Figure 1.1 Number of participating laboratories in 2016

^{*} The values in parentheses show the number of participating laboratories from each country. (wet/dry/soil/inland aquatic environment)

Table 1.1 Participating laboratories and data submission status

Participating laboratories	Code	Da Wet	_	omiss	ion IAE
Cambodia		Wet	Dry	Soil	IAE
Department of Environment Pollution Control, Ministry of Environment	KH01				
China					
Zhuhai Environmental Monitoring Center Station	CN01	~		~	~
Xiamen Environmental Monitoring Station	CN02	~	~	/	~
Xi'an Environmental Monitoring Center Station	CN03	-		/	~
Chongqing Institute of Environmental Science	CN04	~		/	•
Indonesia Control (PAREDAL)	TD01			_	١.
Environmental Management Center (EMC), Environmental Impact Management Agency (BAPEDAL)	ID01	V	/	/	~
Climatology,Meteorological and Geophysical Agency (BMKG) Indonesian National Institute of Aeronautic and Space (LAPAN)	ID02 ID03	7	/		
Indonesian Soil Research Institute (ISRI)	ID03			/	
Research Center for Water Resources (RCWR), Agency for Research and Development, Ministry of Public Works	ID04				_
	1003				Ľ
Japan Institute of Environmental Sciences, Hokkaido Research Organization	JP01	,	/		
Niigata Prefectural Institute of Public Health and Environmental Sciences	JP02		7		
Nagano Environmental Conservation Research Institute	JP03	~	7		
Gifu Prefectural Research Institute for Health and Environmental Sciences	JP04	1	\ \		,
Kochi Prefectural Environmental Research Center	JP07	~			-
Okinawa Prefectural Institute of Health and Environment	JP08	1	~		
Asia Center for Air Pollution Research (ACAP)	JP09	1	/		
Japan Environmental Sanitation Center (JESC)	JP10	~	~		
Japan Environmental Sanitation Center West Japan Branch	JP11	~	~		
Public Corporation of Shimane Environmental and Health	JP12				~
Lao PDR					
Environment Quality Monitoring Center(EQMC), Natural Resources and Environment Institute(NREI), Ministry of Natural Resources and Environment(MONRE)	LA01				
<u>Malaysia</u>					
Division of Environmental Health, Department of Chemistry (DOC)	MY01	~	~		~
Faculty of Applied Science, University Technology Mara (UiTM)	MY03				
Mongolia CF	25704			4	
Central Laboratory of Environment and Metrology	MN01	~		~	_
Myanmar Deportment of Metacarda ary and Hydrology (DMH)	MM01	,			
Department of Meteorology and Hydrology (DMH)	MM01	_	-		
Philippines Fundamental Management Property Control Office (FMP, CO)	DIIO1				
Environmental Management Bureau - Central Office (EMB-CO) Environmental Management Bureau - Condillora Administrativa Region (EMB-CAR)	PH01 PH02	.,	١ ١		<i>'</i>
Environmental Management Bureau - Cordillera Administrative Region (EMB-CAR) University of the Philippines Los Baños (UPLB)	PH02 PH03				~
	11103				
Republic of Korea National Institute of Environment Research (NIER)	KR01	,	/		
		<u> </u>	-		
Russia Limnological Institute, Russian Academy of Sciences, Siberian Branch (LI/RAS/SB)	RU01	,	/	/	,
Primorsky Center for Environmental Monitoring, Roshydromet (PCEM)	RU02	~	•		1
	ROUZ				Ľ
Thailand Pollution Control Department (PCD), Ministry of Natural Resources and Environment (MONRE)	TH01	~	/	/	
Environmental Research and Training Centre (ERTC), Department of Research and Environmental Quality Promotion	l .	~	1		~
Chemistry Department, Science Faculty, Chiangmai University (CMU)	TH04	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	7		
Khon Kaen University (KKU)	TH05	,	7		
King Mongkut's University of Technology Thonburi (KMUTT)	TH06	1	7		
Kasetsart University	TH07				
Songkla University	TH08	~			
Vietnam					
Environmental Laboratory - Center for Environmental Research - Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN)- MoNRE	VN01	~	•	~	~
Mid- Central Regional Hydro Meteorological Center, National Hydro-Meteorological Service of Vietnam (NHMS), MoNRE	VN02	~	~	~	~
Sub-Institute of HydroMeteorology and Environment of South Vietnam (SIHYMETE)	VN03	~			~
Center for Hydro-Meteorological and Environmental Networks, National Hydro-Meteorological Service of Vietnam (NHMS), MoNRE	VN04	~		~	~
Southern Region Hydro-Meteorological Center, National Hydro-Meteorological Service of Vietnam (NHMS), MoNRE	VN05	24	24	12	21
Total number of submitted data:		34	24	13	21

2. 19th INTER-LABORATORY COMPARISON PROJECT ON WET DEPOSITION

2.1 Introduction

In the 19th Inter-laboratory Comparison Project on wet deposition, artificial rainwater samples containing known amounts of major ions were prepared and distributed to the participating countries of EANET by the Network Center (NC). The measured values of pH, electric conductivity (EC) and concentrations of major ions submitted by the participating countries were compared with the prepared values and were treated statistically.

The NC shipped the artificial rainwater samples to laboratories in charge of chemical analysis in EANET in the beginning of October 2016. Their analytical results were required to be submitted to the NC by 28 February 2017.

2.2 Procedures

2.2.1 Participating laboratories

The NC distributed the artificial rainwater samples to 37 laboratories in charge of chemical analysis in 13 countries of EANET. 34 of the participating laboratories submitted their analytical results to the NC. All participating laboratories and their codes and data submission status are listed in Table 1.1 of Chapter 1.

2.2.2 Description of samples

Two kinds of artificial rainwater samples were distributed to the laboratories. A description of the samples is given in Table 2.1.

Table 2.1 Description of artificial rainwater samples

Artificial rain- water sample	l ot		Number of samples	Note
No. 161w No. 162w	100mL each	Polypropyrene bottle 100mL	One bottle each	 Fixed quantity of reagents are dissolved in deionized water Samples do not include other ions than shown in Table 2.2

The prepared values of analytical parameters in the artificial rainwater samples are described in Table 2.2.

Table 2.2 Prepared values/concentrations of analytical parameters*

	pН	EC	SO_4^{2-}	NO ₃ -	Cl-	NH ₄ ⁺	Na ⁺	K^{+}	Ca^{2+}	Mg^{2+}
	-	mS m ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L ⁻¹
No. 161w	4.85	2.39	44.5	21.0	32.3	31.5	18.3	6.9	28.8	7.0
No. 162w	5.30	0.67	10.2	8.4	8.5	13.0	6.5	1.7	3.7	1.8

^{*} For 100 times diluted samples.

2.2.3 Analytical methods and data checking procedures

Before the measurement, the samples have to be diluted 100 times accurately with pure water in each laboratory according to the specified procedure.

All participating laboratories were expected to analyze the diluted samples for the following 10 parameters; pH, EC, concentrations of SO_4^{2-} , NO_3^- , Cl^- , NH_4^+ , Na^+ , K^+ , Ca^{2+} and Mg^{2+} .

The laboratories were required to apply the analytical methods and data checking procedures that were specified in *Technical Manual for Wet Deposition Monitoring in East Asia -2010*. Analytical methods specified in the Technical Manual are listed in Table 2.3.

Table 2.3 Analytical methods specified in the Technical Manual

Parameter	Analytical method
рН	Glass Electrode Method (preferably with the Electrode of non-leak inner cell)
EC	Conductivity Cell Method
SO ₄ ²⁻ NO ₃ - Cl ⁻	Ion Chromatography (preferably with suppressor) Spectrophotometry
NH ₄ ⁺	Ion Chromatography Spectrophotometry (Indophenol Blue Method)
$egin{array}{c} Na^+ \ K^+ \ Ca^{2+} \ Mg^{2+} \end{array}$	Ion Chromatography Atomic Absorption Spectrometry Atomic Emission Spectrometry

Checking analytical results was performed using the calculation of ion balance (R_1) and total electric conductivity agreement (R_2) .

Calculation of ion balance (R₁)

(1) Total anion equivalent concentration (**A** [μ eq L⁻¹]) was calculated by summing the concentrations of all anions (c [μ mol L⁻¹]).

A [μeq L⁻¹] =
$$\sum$$
n c_{Ai} [μmol L⁻¹] = 2c (SO₄²⁻) + c (NO₃⁻) + c (Cl⁻)
n, c_{Ai} : electric charge and concentration [μmol L⁻¹] of anion "i".

(2) Total cation equivalent concentration (\mathbb{C} [μ eq L^{-1}]) was calculated by summing the concentrations of all cations (\mathbb{C} [μ mol L^{-1}]).

$$\begin{split} \textbf{C} \; [\mu \text{eq L}^{\text{-1}}] = \sum & n \; c_{\text{Ci}} \; [\mu \text{mol L}^{\text{-1}}] = 10^{\; (6\text{-pH})} + c \; (N\text{H}_{4}^{\; +}) + c \; (N\text{a}^{+}) + c \; (K^{+}) \\ & + 2c \; (C\text{a}^{2^{+}}) + 2c \; (M\text{g}^{2^{+}}) \end{split}$$

n, c_{Ci}: electric charge and concentration [μmol L⁻¹] of cation "i".

(3) Calculation of ion balance (R₁)

$$R_1 = 100 \times (C-A) / (C+A)$$

(4) R₁ calculated by the above equation was compared with allowable ranges specified in *Technical Manual for Wet Deposition Monitoring in East Asia -2010* which are shown in Table 2.4. If R₁ was out of the range, re-measurement, check with standard solutions, and/or inspection of calibration curves were required.

Table 2.4 Allowable ranges for R₁ in different concentration ranges

	0
C+ A [μeq L ⁻¹]	R ₁ [%]
< 50	± 30
50 - 100	± 15
> 100	± 8

Comparison between calculated and measured values of electrical conductivity (R2)

(1) Total electrical conductivity (Λ calc) was calculated as follows;

$$\begin{split} \Lambda \; \text{calc} \; [\text{mS m}^{\text{-1}}] = & \{ 349.7 \times 10^{\; (6\text{-pH})} + 80.0 \times 2\text{c} \; (\text{SO}_4^{2\text{-}}) + 71.4 \times \text{c} \; (\text{NO}_3^{\text{-}}) \\ & + 76.3 \times \text{c} \; (\text{Cl}^{\text{-}}) + 73.5 \times \text{c} \; (\text{NH}_4^{\text{+}}) + 50.1 \times \text{c} \; (\text{Na}^{\text{+}}) + 73.5 \times \text{c} \; (\text{K}^{\text{+}}) \\ & + 59.5 \times 2\text{c} \; (\text{Ca}^{2\text{+}}) + 53.0 \times 2\text{c} \; (\text{Mg}^{2\text{+}}) \} \; / \; 10000 \end{split}$$

- c: Molar concentrations [µmol L-1] of ions in the parenthesis; each constant value was ionic equivalent conductance at 25 degrees centigrade.
- (2) Electrical conductivity comparison (R₂) was calculated as follows;

$$R_2 = 100 \times (\Lambda \text{ calc } -\Lambda \text{ meas})/(\Lambda \text{ calc } +\Lambda \text{ meas})$$

 Λ meas : measured conductivity

(3) R₂ calculated by the above equation was compared with allowable ranges specified in the Technical Manual which are shown in Table 2.5. If R₂ was out of the range, re-measurement, check with standard solutions, and/or inspection of calibration curves were required.

Table 2.5 Allowable ranges for R₂ in different ranges of EC

Λ meas [mS m ⁻¹]	R ₂ [%]
< 0.5	± 20
0.5 - 3	± 13
> 3	± 9

2.3 Results

The NC received the analytical results from 34 laboratories in the participating countries of EANET. The original data submitted by the laboratories are shown in Appendix 2.2.

Basic statistics of submitted data summarized in Table 2.6 was calculated for each parameter of the artificial rainwater samples such as: average (Va), minimum (Min.), maximum (Max.), standard deviation (S.D.), and number of data (N). The outliers, exceeding three standard deviations, were excluded from the calculation. As shown in Table 2.6, difference of Va from prepared value (Vp) was slightly large. The range of $\Delta V/Vp$ was between -3.8% to 3.0% for sample No. 161w, and -3.3% to 16.4% for sample No. 162w.

Table 2.6 Summary of analytical results of the artificial rainwater samples (Reported data after removing outliers)

Sample	No. 161w								
Cor	stituents	Prepared	Average	$\Delta V/Vp^{*1}$	S.D.	N	Min.	Max.	
	istituents	(Vp)	(Va)	%	Б.Б.		141111.	IVIUA	
рН		4.85	4.92	1.4	0.15	33	4.53	5.44	
EC	[mS m ⁻¹]	2.39	2.30	-3.8	0.17	33	1.67	2.92	
SO4 ²⁻	$[\mu mol L^{-1}]$	44.5	44.1	-0.9	1.71	32	38.8	48.6	
NO ₃	$[\mu mol L^{-1}]$	21.0	20.6	-1.8	1.76	32	17.2	27.4	
Cl	$[\mu mol L^{-1}]$	32.3	31.7	-1.9	1.39	32	29.1	35.3	
NH4 ⁺	[µmol L ⁻¹]	31.5	31.6	0.2	2.95	32	25.6	39.2	
Na ⁺	[µmol L ⁻¹]	18.3	18.8	3.0	1.74	31	15.9	24.4	
K	$[\mu mol L^{-1}]$	6.9	6.8	-0.9	0.73	32	5.3	9.0	
Ca ²⁺	[µmol L ⁻¹]	28.8	29.3	1.7	2.39	31	25.2	35.1	
Mg ²⁺	$[\mu mol L^{-1}]$	7.0	6.9	-0.8	0.74	32	5.5	9.0	
Sample	No. 162w								
Cor	stituents	Prepared	Average	$\Delta V/Vp^{*1}$	S.D.	N	Min.	Mov	
	istituents	(Vp)	(Va)	%	S.D.	IN	IVIIII.	Max.	
рН									
		5.30	5.33	0.6	0.19	34	4.87	5.73	
EC	[mS m ⁻¹]	5.30 0.67	5.33 0.70	0.6 4.7	0.19 0.05	34 33	4.87 0.61	5.73 0.85	
EC SO4 ²⁻	[mS m ⁻¹]								
SO ₄ ² -NO ₃	[mS m ⁻¹] [µmol L ⁻¹] [µmol L ⁻¹]	0.67	0.70	4.7	0.05	33	0.61	0.85	
SO4 ²⁻	$[\mu mol L^{-1}]$	0.67 10.2	0.70 10.0	4.7 -2.0	0.05 0.55	33 32	0.61 8.7	0.85	
SO ₄ ² - NO ₃	[μmol L ⁻¹] [μmol L ⁻¹]	0.67 10.2 8.4	0.70 10.0 8.2	4.7 -2.0 -2.4	0.05 0.55 0.83	33 32 33	0.61 8.7 6.2	0.85 11.4 10.6	
SO ₄ ²⁻ NO ₃	$[\mu \text{mol } L^{-1}]$ $[\mu \text{mol } L^{-1}]$	0.67 10.2 8.4 8.5	0.70 10.0 8.2 8.4	4.7 -2.0 -2.4 -0.7	0.05 0.55 0.83 0.79	33 32 33 31	0.61 8.7 6.2 6.7	0.85 11.4 10.6 11.3	
SO ₄ ²⁻ NO ₃ Cl NH ₄ Na K	[μmol L ⁻¹] [μmol L ⁻¹] [μmol L ⁻¹] [μmol L ⁻¹]	0.67 10.2 8.4 8.5 13.0	0.70 10.0 8.2 8.4 12.8	4.7 -2.0 -2.4 -0.7 -1.9	0.05 0.55 0.83 0.79 1.29	33 32 33 31 32	0.61 8.7 6.2 6.7 10.8	0.85 11.4 10.6 11.3 16.1	
SO4 ²⁻ NO3 ⁻ CI ⁻ NH4 ⁺ Na ⁺	[μmol L ⁻¹] [μmol L ⁻¹] [μmol L ⁻¹]	0.67 10.2 8.4 8.5 13.0 6.5	0.70 10.0 8.2 8.4 12.8 6.3	4.7 -2.0 -2.4 -0.7 -1.9 -3.3	0.05 0.55 0.83 0.79 1.29 1.10	33 32 33 31 32 31	0.61 8.7 6.2 6.7 10.8 3.3	0.85 11.4 10.6 11.3 16.1 8.5	

Note: *1, (Va-Vp)/Vp x 100

The Data Quality Objective for accuracy (hereafter referred to as DQO) is specified in the QA/QC program of EANET for every parameter to be within $\pm 15\%$ of deviation from Vp. In this report, analytical data of the artificial rainwater samples were compared with Vp, and the data exceed DQO were marked with flags. The flag "E" indicates that the deviation from Vp exceeds $\pm 15\%$ but not $\pm 30\%$, and the flag "X" indicates that the deviation from Vp exceeds $\pm 30\%$.

A set of data for each sample was evaluated by the data checking procedures described in section 2.2.3. The flag "I" and the flag "C" were put to the data sets with poor ion balance and poor conductivity agreement, respectively.

The results were evaluated by the following three aspects:

- i) Comparison of concentration dependence on level of their concentration
 - sample No. 161w and No. 162w,
- ii) Comparison of individual parameters,
- iii) Comparison of circumstances of chemical analysis in each participating laboratory.

Evaluation of analytical data on both sample No. 161w and No. 162w is presented in "2.3.1 Evaluation of laboratories' performance (by sample)", evaluation of analytical data for each constituent is presented in 2.3.2 Evaluation of laboratories' performance (by analytical parameter), and evaluation of analytical data by the circumstances of chemical analysis such as analytical method used, experience of personnel in charge, and other analytical condition are presented in 2.3.4 Information on laboratories.

2.3.1 Evaluation of laboratories' performance (by sample)

1) Sample No. 161w

The number and percentage of the flagged data for sample No. 161w are shown in Table 2.7. 22 analytical data out of 326 were flagged by "E". And 8 analytical data out of 326 were flagged by "X". Data flagged by "E" and "X" shared 9.2 percent of all the submitted data for sample No. 161w.

The data normalized by prepared value in each parameter are shown in Figure 2.1.

Table 2.7 Number of flagged data for the Sample No. 161w

Charactarization of data	рН	EC	SO4 ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}	Total
Data within DQO	34	31	32	30	32	28	28	28	28	25	296
Data with flag E*1	0	1	0	1	0	4	2	3	4	7	22
Data with flag X*2	0	2	1	2	0	0	2	1	0	0	8
Flagged data [%]	0.0	8.8	3.0	9.1	0.0	12.5	12.5	12.5	12.5	21.9	9.2

(Total data = 326)

Note: *1, flag E: 15%<| Deviation |≤30% *2, flag X: 30%<| Deviation |

Figure 2.1 Distribution of the data normalized by prepared value in each parameter for sample No. 161w

The parameter which had the most flags was Mg²⁺. The analytical data submitted by the participating laboratories are shown in Table 2.8 with flags.

Table 2.8 Analytical Results of Sample No. 161w

Lab. ID*1	pН	EC	SO ₄ ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺	R ₁	R ₂
		mS m ⁻¹	μmol L ⁻¹	μmol L ⁻¹	μmol L-1	μmol L-1	μmol L ⁻¹	μmol L ⁻¹	μmol L-1	μmol L ⁻¹	%	%
CN01	4.98	2.32	43.1	19.0	29.4	32.3	16.1	7.7	27.3	7.5	0.6	-2.8
CN02	4.86	2.34	43.1	20.6	32.1	31.3	18.4	7.1	28.0	7.0	0.6	0.1
CN03	4.96	2.25	44.5	21.1	31.0	32.1	8.5 X	7.2	28.0	7.1	-4.5	-0.6
CN04	4.92	2.28	45.5	21.0	32.8	31.8	18.6	7.0	28.6	7.0	-1.5	1.3
ID01	4.94	2.25	42.4	19.9	30.9	27.0	18.0	7.9	30.4	6.5	0.9	-0.3
ID02	4.97	2.08	42.1	20.6	30.9	29.7	18.2	6.0	26.5	7.2	-1.4	2.3
ID03	5.03	2.25	44.6	20.8	32.0	30.9	19.7	7.8	28.8	7.6	-0.5	-0.2
JP01	4.90	2.38	43.0	20.0	31.0	32.3	17.5	6.7	28.1	7.0	0.8	-1.9
JP03	4.89	2.31	45.6	21.2	32.4	32.7	18.3	6.9	28.6	6.6	-1.3	1.3
JP04	4.90	2.34	43.9	20.5	31.8	30.5	17.9	6.7	28.1	6.5	-1.2	-0.9
JP07	4.85	2.40	44.0	20.2	32.1	29.2	18.4	6.5	26.8	6.5	-2.0	-1.5
JP08	4.88	2.27	44.6	20.6	32.3	31.2	19.1	6.8	30.8	6.8	1.2	2.4
JP09	4.98	2.27	43.9	20.6	32.2	31.7	18.5	6.9	28.6	7.1	-0.6	-0.4
JP10	4.89	2.35	43.2	20.5	31.7	32.0	18.6	7.0	28.4	7.0	1.0	-0.6
JP11	5.16	2.21	44.5	20.3	32.5	34.2	19.6	7.5	28.9	7.6	-0.2	-0.8
MY01	4.88	2.37	43.4	18.2	29.1	30.8	18.0	6.2	29.6	5.7 E	1.7	-1.9
MN01	4.53	2.33	48.6	20.3	29.5							
MM01	4.74	3.67 X	43.8	19.2	31.9	29.8	16.5	6.3	28.3	5.9 E	0.2	-19.6 C
PH01	4.83	2.17	43.6	19.1	30.7	32.8	19.2	7.0	31.6	6.9	4.8	5.5
PH02	4.91	2.33	43.4	18.5	30.7	33.0	19.6	6.5	31.7	6.8	4.4	0.0
KR01	4.98	2.31	42.3	20.2	30.9	36.1	19.0	6.5	27.4	5.6 E	0.9	-2.1
RU01	4.85	2.36	43.1	20.6	31.5	27.1	18.5	6.9	25.2	6.2	-3.3	-1.7
RU02	5.52	1.67 X	22.8 X	27.4 X	35.3	25.6 E	24.4 X	9.0 X	20.2 E	8.2 E	4.6	-0.9
TH01	4.89	2.35	46.7	20.1	35.1	37.8 E	17.2	6.3	29.0	6.9	-0.9	1.8
TH02	4.97	2.33	44.6	20.6	31.6	31.3	18.5	7.3	27.9	6.9	-1.4	-1.6
TH04	4.78	2.35	46.2	20.9	33.1	30.2	17.5	6.6	32.1	7.1	1.0	3.8
TH05	4.91	2.30	44.7	17.2 E	30.4	35.1	15.9	5.3 E	33.9 E	7.4	4.9	1.3
TH06	4.86	2.38	44.5	21.2	31.6	31.3	19.0	6.9	26.4	9.0 E	0.0	-0.2
TH08	4.82	2.22									0.5 *2	4.3 *2
VN01	4.73	2.36	45.2	20.8	32.8	34.6	19.4	7.1	26.4	7.2	1.0	4.2
VN02	5.17	2.09	43.8	21.3	31.1	30.5	20.0	6.0	31.0	6.7	-0.5	1.1
VN03	4.83	2.92 E	43.4	31.2 X		29.4	22.2 E	5.7 E	33.8 E	6.9		
VN04	5.10	2.45	47.2	24.1	33.7	39.2 E	22.8 E	7.8	35.1 E	8.4 E	4.0	-0.4
VN05	5.44	2.28	38.8	23.5	30.0	26.3 E	19.7	5.7 E	32.4	5.5 E	0.0	-8.5
Vp	4.85	2.39	44.5	21.0	32.3	31.5	18.3	6.9	28.8	7.0	0.0	0.1
N of data	34	34	33	33	32	32	32	32	32	32	0.0	V
Within DQO	34	31	32	30	32	28	28	28	28	25		
Flag E	0	1	0	1	0	4	2	3	4	7		
Flag X	0	2	1	2	0	0	2	1	0	0		
		Deviation						•				

Note: "E", 15% | Deviation | 30%; "X", 30% | Deviation |

"I", Poor ion balance (R1); "C", Poor conductivity agreement (R2); "---", Not measured; "Vp", Prepared values of parameters;

*1: The abbreviated name and code are given in Chapter 1

^{*2:} R₁ and R₂ for TH08 were calculated with results of ion concentration from TH06.

2) Sample No. 162w

The number and percentage of the flagged data for sample No. 162w are shown in Table 2.9. 43 analytical data out of 326 were flagged by "E". 35 analytical data out of 326 were flagged by "X". Data marked with flags shared up to 23.9 percent of all the submitted data for sample No. 162w.

The normalized data by prepared value in each parameter are shown in Figure 2.2.

Table 2.9 Number of flagged data for the sample No. 162w

Charactarization of data	pН	EC	SO ₄ ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K^{+}	Ca ²⁺	${\rm Mg}^{2^+}$	Total
Data within DQO	34	31	32	28	28	26	22	21	12	14	248
Data with flag E*1	0	2	0	5	2	6	5	7	7	9	43
Data with flag X*2	0	1	1	0	2	0	5	4	13	9	35
Flagged data [%]	0.0	8.8	3.0	15.2	12.5	18.8	31.3	34.4	62.5	56.3	23.9

(Total data = 326)

Note: *1, flag E: 15%< | Deviation | \leq 30% *2, flag X: 30%< | Deviation |

Figure 2.2 Distribution of the data normalized by prepared value for each parameter for sample No. 162w

Analytical data of cations had a tendency to be marked with flags in comparison with anions. The analytical data submitted by the participating laboratories are shown in Table 2.10 with flags.

Table 2.10 Analytical Results of Sample No. 162w

Lab. ID*1	pН	EC	SO ₄ ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺	R ₁	R ₂
	r	mS/m	μmol L-1	μmol L-1	μmol L-1	μmol L-1	μmol L-1	μmol L-1	μmol L-1	μmol L-1	%	%
CN01	5.13	0.69	10.2	8.1	9.3	13.5	3.3 X	2.4 X	4.1	3.3 X	4.6	5.4
CN02	5.24	0.69	10.2	8.3	9.1	11.7	6.1	1.8	4.0	2.1 E	-0.3	0.2
CN03	5.27	0.69	10.1	8.1	8.7	11.7	3.4 X	1.8	4.1	2.1 E	-3.3	-2.2
CN04	5.27	0.69	10.4	8.1	9.0	12.7	5.8	1.5	4.1	2.1 E	-0.2	-0.4
ID01	5.73	0.66	10.1	6.9 E	9.4	11.7	4.5 X	1.5	5.9 X	1.6	-2.7	-8.7
ID02	5.34	0.62	9.9	8.6	7.9	13.4	6.6	2.1 E	8.3 X	2.5 X	14.2	6.9
ID03	5.49	0.65	10.7	8.6	8.9	13.5	7.6 E	2.5 X	5.8 X	2.6 X	5.7	1.2
JP01	5.30	0.75	10.2	8.3	8.3	12.3	5.8	1.7	3.4	1.6	-3.0	-7.1
JP03	5.28	0.70	10.3	8.6	8.5	13.4	6.4	1.5	3.7	2.0	0.3	-1.3
JP04	5.29	0.68	10.2	8.1	8.4	12.6	6.3	1.7	3.6	1.6	-1.1	-1.4
JP07	5.29	0.75	10.0	8.2	8.5	13.1	6.1	1.5	3.4	1.6	-1.2	-6.5
JP08	5.57	0.68	10.2	8.2	8.5	13.1	6.6	1.7	5.1 X	1.8	1.1	-6.1
JP09	5.37	0.68	10.1	8.6	8.6	13.3	6.5	1.7	3.7	2.0	-0.3	-2.6
JP10	5.25	0.72	9.9	8.2	8.3	13.4	6.8	1.8	3.6	1.9	3.1	-2.4
JP11	5.70	0.65	9.9	7.8	8.3	12.0	6.5	2.3 X	2.7 E	2.0	-5.4	-9.4
MY01	5.21	0.75	8.7	6.6 E	6.7 E	12.9	5.9	1.4 E	3.1 E	1.3 E	6.8	-8.0
MN01	4.87	0.71	10.4	7.8	7.1 E							
MM01	5.25	1.11 X	9.4	7.6	7.3	11.5	5.5 E	1.5	3.0 E	1.4 E	-1.2	-27.5 C
PH01	5.31	0.65	9.6	7.7	7.9	15.1 E	7.0	1.8	5.4 X	1.3 E	9.6	2.1
PH02	5.31	0.72	9.3	7.3	7.9	12.5	6.9	1.6	4.9 X	1.3 E	6.2	-5.7
KR01	5.59	0.72	9.2	8.6	7.9	16.1 E	6.6	1.4 E	5.4 X	1.3 E	6.9	-9.2
RU01	5.20	0.69	10.1	8.2	8.4	11.0 E	6.1	1.7	2.7 E	1.6	-4.4	-0.9
RU02	5.63	0.82 E	14.9 X	10.6 E	11.6 X	11.4	21.3 X	7.7 X	4.7 E	2.4 X	4.5	-0.4
TH01	5.55	0.66	9.5	7.1 E	8.3	15.9 E	5.9	1.4 E	3.5	1.8	3.1	-6.3
TH02	5.30	0.70	9.5	8.0	8.1	13.5	6.5	2.0 E	3.8	1.9	4.5	-3.1
TH04	5.42	0.69	10.6	8.5	8.4	13.5	6.3	1.8	6.0 X	2.5 X	5.3	-1.5
TH05	5.33	0.67	9.7	6.2 E	7.8	12.4	5.2 E	1.2 E	2.7 E	2.2 E	-0.2	-5.2
TH06	5.25	0.74	10.6	9.1	11.3 X	12.2	6.6	2.0 E	4.8 E	2.8 X	0.0	0.1
TH08	5.17	0.72									1.4 *2	4.1 *2
VN01	5.05	0.75	11.0	8.0	8.8	10.8 E	6.4	1.8	5.0 X	2.0	3.9	4.3
VN02	5.41	0.61	9.4	8.7	8.3	11.0 E	8.0 E	1.6	5.2 X	2.4 X	5.2	1.8
VN03	5.24	0.72	9.4	9.3		11.9	8.5 X	1.8	5.5 X	2.4 X		
VN04	5.12	0.85 E	11.4	9.6	9.1	13.8	7.7 E	1.8	5.1 X	2.4 X	5.0	-1.5
VN05	5.62	0.68	9.6	9.0	8.7	11.1	7.4	1.9	5.5 X	2.0	1.2	-7.3
Vp	5.30	0.67	10.2	8.4	8.5	13.0	6.5	1.7	3.7	1.8	-0.1	-0.2
N of data	34	34	33	33	32	32	32	32	32	32		
Within DQO	34	31	32	28	28	26	22	21	12	14		
Flag E	0	2	0	5	2	6	5	7	7	9		
Flag X	0	1	1	0	2	0	5	4	13	9		
Note: '	Note: "F", 15% Deviation 30% : "X", 30% Deviation											

Note: "E", 15%<| Deviation | \(\le 30\% \); "X", 30%<| Deviation |

[&]quot;I", Poor ion balance (R₁); "C", Poor conductivity agreement (R₂); "---", Not measured; "Vp", Prepared values of parameters; *1: The abbreviated name and code are given in Chapter 1

^{*2:} R₁ and R₂ for TH08 were calculated with results of ion concentration from TH06.

3) Comparison of high and low concentration sample

The percentage of the flagged data for sample No. 161w and 162w are shown in Figure 2.3. The percentage of the data within the DQO for sample No. 161w and 162w were 90.8% and 76.1% respectively. The difference between both samples was 14.7%. In this project, the total number of flagged data was 108 (E: 65, X: 43) among the whole set of 652 data.

Figure 2.3 Percentage of flagged data for sample No. 161w and No. 162w (Left: No. 161w, Right: No. 162w)

4) The number of laboratory (by number of flags)

The number of laboratory by number of flags is shown in Figure 2.4. The number of laboratory without flagged data was 7, which corresponds to 20.6% of all the participating laboratories.

Figure 2.4 Distribution of the number of laboratory (by number of flags)

2.3.2 Evaluation of laboratories' performance (by analytical parameter)

The data normalized by Vp are shown in Figures 2.5 through 2.24 for each parameter. In scatter diagrams (lower figures), bold line means the prepared values of sample No. 161w and 162w, broken lines and dotted lines showed the values of Vp±15% and Vp±30% respectively.

1) pH

All participating laboratories used pH meter with glass electrode method for the measurement of pH. All the obtained data satisfied the DQO of the QA/QC program of EANET.

Figure 2.5 Deviation from prepared value for pH (normalized by prepared value)

Figure 2.6 Scatter diagram for pH

2) EC

All participating laboratories used conductivity cell method for the measurement of EC. The data of sample No.161w from VN03 and the data of sample No.162w from 2 laboratories (RU02 and VN04) were marked with flag "E". Additionally, the data of sample No.161w from 2 laboratories (MM01 and RU02) and the data of sample No.162w from MM01 were marked with flag "X".

Figure 2.7 Deviation from prepared value for EC (normalized by prepared value)

Figure 2.8 Scatter diagram for EC

3) SO₄²-

The data of sample No.161w and No.162w from RU02 were marked with flag "X". There were no data marked with flag "E".

Figure 2.9 Deviation from prepared value for SO₄²⁻ (normalized by prepared value)

Figure 2.10 Scatter diagram for SO₄²⁻

4) NO₃

The data of sample No. 161w from TH05 and the data of sample No. 162w from 5 laboratories (ID01, MY01, RU02, TH01 and TH05) were marked with flag "E". Additionally, the data of sample No. 161w from 2 laboratories (RU02 and VN03) were marked with flag "X".

Figure 2.11 Deviation from prepared value for NO₃- (normalized by prepared value)

Figure 2.12 Scatter diagram for NO₃-

5) Cl⁻

The data of sample No.162w from 2 laboratories (MY01 and MN01) were marked with flag "E". Additionally, the data of sample No.162w from 2 laboratories (RU02 and TH06) were marked with flag "X".

Figure 2.13 Deviation from prepared value for Cl (normalized by prepared value)

Figure 2.14 Scatter diagram for Cl⁻

6) NH₄⁺

The data of sample No. 161w from 4 laboratories (RU02, TH01, VN04 and VN05) and the data of sample No.162w from 6 laboratories (PH01, KR01, RU01, TH01, VN01 and VN02) were marked with flag "E".

Figure 2.15 Deviation from prepared value for NH₄⁺ (normalized by prepared value)

Figure 2.16 Scatter diagram for NH₄⁺

7) Na⁺

The data of sample No. 161w from 2 laboratories (VN03 and VN04) and the data of sample No. 162w from 5 laboratories (ID03, MM01, TH05, VN02 and VN04) were marked with flag "E". Additionally, the data of sample No. 161w from 2 laboratories (CN03 and RU02) and the data of sample No. 162w from 5 laboratories (CN01, CN03, ID01, RU02 and VN03) were marked with flag "X".

Figure 2.17 Deviation from prepared value for Na⁺ (normalized by prepared value)

Figure 2.18 Scatter diagram for Na⁺

8) K⁺

The data of sample No. 161w from 3 laboratories (TH05, VN03 and VN05) and the data of sample No. 162w from 7 laboratories (ID02, MY01, KR01, TH01, TH02, TH05 and TH06) were marked with flag "E". Additionally, the data of sample No. 161w form RU02 and the data of sample No. 162w from 4 laboratories (CN01, ID03, JP11 and RU02) were marked with flag "X".

Figure 2.19 Deviation from prepared value for K⁺ (normalized by prepared value)

Figure 2.20 Scatter diagram for K⁺

9) Ca²⁺

The data of sample No. 161w from 4 laboratories (RU02, TH05, VN03 and VN04) and the data of sample No. 162w from 7 laboratories (JP11, MY01, MM01, RU01, RU02, TH05 and TH06) were marked with flag "E". Additionally, the data of sample No.162w from 13 laboratories (ID01, ID02, ID03, JP08, PH01, PH02, KR01, TH04, VN01, VN02, VN03, VN04 and VN05) were marked with flag "X".

Figure 2.21 Deviation from prepared value for Ca²⁺ (normalized by prepared value)

Figure 2.22 Scatter diagram for Ca²⁺

10) Mg²⁺

The data of sample No. 161w from 7 laboratories (MY01, MM01, KR01, RU02, TH06, VN04 and VN05) and the data of sample No. 162w from 9 laboratories (CN02, CN03, CN04, MY01, MM01, PH01, PH02, KR01 and TH05) were marked with flag "E". Additionally, the data of sample No. 162w from 9 laboratories (CN01, ID02, ID03, RU02, TH04, TH06, VN02, VN03 and VN04) were marked with flag "X".

Figure 2.23 Deviation from prepared value for Mg^{2+} (normalized by prepared value)

Figure 2.24 Scatter diagram for Mg²⁺

11) Scatter diagrams

Most of constituents showed positive correlation between the submitted pairs of results of sample No. 161w and 162w. It suggested that systematic deviation could be the reason for the deviation of results in many of laboratories.

2.3.3 Sample and analysis evaluation

The concentrations of the analytical parameters in the samples for this survey were fixed on the basis of the reference to monitoring data on wet deposition in EANET. Two samples were not distinguished as high or low concentration samples when they were distributed to participating laboratories. Ions (including pH as H⁺) concentrations of sample No. 161w were higher than those of No. 162w.

The relative standard deviations (R.S.D.) of each parameter for sample No. 161w and No. 162w are shown in the Figure 2.25. The R.S.D. values for sample No. 162w were almost equal to those for sample No.161w or higher than those values. Especially, the difference between the R.S.D. values for sample No.161w and sample No. 162w were high in Ca²⁺ and Mg²⁺. The R.S.D. of Mg²⁺ for sample No. 162w was the highest in this survey.

(Relative standard deviation (%) = (Standard deviation / Average) x100; Reported data after removing the outliers)

Figure 2.25 Relative standard deviations (R.S.D.) of each constituent

2.3.4 Information on laboratories

1) Number of analysts and their experience

Number of analysts and years of their experience are shown in Table 2.11 and Table 2.12 respectively. In Table 2.11, the letters of "A", "B" and "C" mean individuals of analysts in each laboratory who carried out analyses. In 16 laboratories, same analyst carried out the analyses for all parameters. Clear relationship between the number of analysts and flagged data was not suggested.

Table 2.11 Number of analysts

-											
Lab. ID	Total	рН	EC	SO ₄ ²⁻	NO ₃	Cl ⁻	NH4 ⁺	Na ⁺	K^+	Ca ²⁺	Mg ²⁺
CN01	1	A	A	A	A	A	A	A	A	A	A
CN02	2	A	A	В	В	В	В	В	В	В	В
CN03	2	A	A	В	В	В	В	В	В	В	В
CN04	1	A	A	A	A	A	A	A	A	A	A
ID01	2	A	A	В	В	В	В	В	В	В	В
ID02	4	A	В	C	C	C	D	D	D	D	D
ID03	1	A	A	A	A	A	A	A	A	A	A
JP01	1	A	A	A	A	A	A	A	A	A	A
JP03	1	A	A	A	A	A	A	A	A	A	A
JP04	1	A	A	A	A	A	A	A	A	A	A
JP07	1	A	A	A	A	A	A	A	A	A	A
JP08	1	A	A	A	A	A	A	A	A	A	A
JP09	1	A	A	A	A	A	A	A	A	A	A
JP10	1	A	A	A	A	A	A	A	A	A	A
JP11	2	A	A	В	В	В	В	В	В	В	В
MY01	4	A	A	В	В	С	D	D	D	D	D
MN01	2	A	A	В	В	В					
MM01	1	A	A	A	A	A	A	A	A	A	A
PH01	1	A	A	A	A	A	A	A	A	A	A
PH02	2	A	A	В	В	В	В	В	В	В	В
KR01	1	A	A	A	A	A	A	A	A	A	A
RU01	3	A	A	В	В	В	A	С	С	C	C
RU02	2	A	A	A	A	A	A	В	В	В	В
TH01	1	A	A	A	A	A	A	A	A	A	A
TH02	2	A	В	В	В	В	A	A	A	A	A
TH04	2	A	A	В	В	В	В	В	В	В	В
TH05	2	A	A	В	В	В	В	В	В	В	В
TH06	1	A	A	A	A	A	A	A	A	A	A
TH08	1	A	A								
VN01	2	A	A	В	В	В	В	В	В	В	В
VN02	2	A	A	В	В	В	В	В	В	В	В
VN03	3	A	A	В	A		A	С	С	A	C
VN04	2	A	A	В	В	В	В	В	В	В	В
VN05	2	A	A	В	В	В	В	В	В	В	В

Note: Light mesh, Analytic data of sample No. 161w or No. 162w was marked with flag "E" or "X";

Dark mesh, Analytic data of both samples were marked with flag "E" or "X";

[&]quot;---", Not measured *: F

^{*:} For TH08, ions were analyzed by TH06.

Total of 152 data out of 326 were analyzed by the analysts whose experience was less than 5 years. The number corresponds to 46.6% of all the submitted data. Clear relationship between the years of experience and flagged data was not suggested.

Table 2.12 Years of experience

Lab. ID	рН	EC	SO ₄ ² -	NO ₃	Cl ⁻	NH4 ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺
CN01	2	2	2	2	2	2	2	2	2	2
CN02	4	4	8	8	8	8	8	8	8	8
CN03	18	18	6	6	6	6	6	6	6	6
CN04	8	8	8	8	8	8	8	8	8	8
ID01	3	3	14	14	14	14	14	14	14	14
ID02	10	3	16	16	16	9	9	9	9	9
ID03	8	8	8	8	8	8	8	8	8	8
JP01	13	13	13	13	13	13	13	13	13	13
JP03	3	3	3	3	3	3	3	3	3	3
JP04	2	2	2	2	2	2	2	2	2	2
JP07	2	2	2	2	2	2	2	2	2	2
JP08	3	3	3	3	3	3	3	3	3	3
JP09	1	1	1	1	1	1	1	1	1	1
JP10	1	1	1	1	1	1	1	1	1	1
JP11	1	1	1	1	1	1	1	1	1	1
MY01	3	3	3	3	3	10	10	10	10	10
MN01	9	9	13	13	13					
MM01	11	11	11	11	11	11	11	11	11	11
PH01	2	2	2	2	2	2	2	2	2	2
PH02	2	2	2	2	2	2	2	2	2	2
KR01	15	15	15	15	15	15	15	15	15	15
RU01	17	17	18	18	18	18	18	18	18	18
RU02	2	2	2	2	2	2	25	25	25	25
TH01	7	7	6	6	6	6	6	6	6	6
TH02	19	13	13	13	13	19	19	19	19	19
TH04	13	13	2	2	2	2	2	2	2	2
TH05	15	15	2	2	2	2	2	2	2	2
TH06	11	11	11	11	11	11	11	11	11	11
TH08	6	6								
VN01	3	3	23	23	23	23	23	23	23	23
VN02	7	7	3	3	3	3	3	3	3	3
VN03	2	2	8	2		2	4	4	2	4
VN04	12	12	10	10	10	10	10	10	10	10
VN05	3	3	10	10	10	10	10	10	10	10

Note: Light mesh, Analytic data of sample No. 161w or No. 162w was marked with flag "E" or "X";

Dark mesh, Analytic data of both samples were marked with flag "E" or "X";

[&]quot;---", Not measured

^{*:} For TH08, ions were analyzed by TH06.

2) Analytical instruments

As shown in Figure 2.26, most of the participating laboratories used the specified methods described in *Technical Manual for Wet Deposition Monitoring in East Asia -2010*. RU01 and RU02 did not use the specified methods for the analyses of NH₄⁺ (Spectrophotometry without Indophenol). In addition, RU02 did not use the specified methods for the analyses of Cl⁻ (Titrimetry). The specified methods are shown in Table 2.3.

Analytical methods used for the measurement in the participating laboratories are shown in Table 2.13. Clear relationship between analytical methods and flagged data was not suggested.

Figure 2.26 Percentage of laboratories that use the specified methods

Table 2.13 Analytical method used for the measurement in the participating laboratories

Lab. ID	SO ₄ ²⁻	NO ₃	Cĺ	NH ₄ ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg^{2+}
KH01								
CN01	IC	IC	IC	IC	IC	IC	IC	IC
CN02	IC	IC	IC	IC	IC	IC	IC	IC
CN03	IC	IC	IC	IC	IC	IC	IC	IC
CN04	IC	IC	IC	IC	IC	IC	IC	IC
ID01	IC	IC	IC	IC	IC	IC	IC	IC
ID02	IC	IC	IC	IC	IC	IC	IC	IC
ID03	IC	IC	IC	IC	IC	IC	IC	IC
JP01	IC	IC	IC	IC	IC	IC	IC	IC
JP03	IC	IC	IC	IC	IC	IC	IC	IC
JP04	IC	IC	IC	IC	IC	IC	IC	IC
JP07	IC	IC	IC	IC	IC	IC	IC	IC
JP08	IC	IC	IC	IC	IC	IC	IC	IC
JP09	IC	IC	IC	IC	IC	IC	IC	IC
JP10	IC	IC	IC	IC	IC	IC	IC	IC
JP11	IC	IC	IC	IC	IC	IC	IC	IC
LA01								
MY01	IC	IC	IC	IC	IC	IC	IC	IC
MN01	IC	IC	IC					
MM01	IC	IC	IC	IC	IC	IC	IC	IC
PH01	IC	IC	IC	IC	IC	IC	IC	IC
PH02	IC	IC	IC	IC	IC	IC	IC	IC
KR01	IC	IC	IC	IC	IC	IC	IC	IC
RU01	IC	IC	IC	SP	AES	AES	AAS	AAS
RU02	SP	SP	TI	SP	AES	AES	AAS	AAS
TH01	IC	IC	IC	IC	IC	IC	IC	IC
TH02	IC	IC	IC	IC	IC	IC	IC	IC
TH04	IC	IC	IC	IC	IC	IC	IC	IC
TH05	IC	IC	IC	IC	IC	IC	IC	IC
TH06	IC	IC	IC	IC	IC	IC	IC	IC
TH08								
VN01	IC	IC	IC	IC	IC	IC	IC	IC
VN02	IC	IC	IC	IC	IC	IC	IC	IC
VN03	SP	SP		SP	AES	AES	AES	AES
VN04	IC	IC	IC	IC	IC	IC	IC	IC
VN05	IC	SP	IC * F THO	IC	IC	IC	IC	IC

Note: "---" Not measured

*: For TH08, ions were analyzed by TH06.

IC: Ion Chromatography

AES: Atomic Emission Spectrometry

TI: Titrimetry

AAS: Atomic Absorption Spectrometry

SP: Spectrophotometry

3) Date of analysis

Figure 2.27 shows the distribution of "Start date" and "Finish date" of analysis in the participating laboratories. In total, 62% of all the submitted data was determined within the year of 2016, and 9% was finished after the deadline of data submission in this project.

Figure 2.27 Distribution of start date and finish date of analysis

Figure 2.28 shows how many days were needed to determine the analytical data in the participating laboratories. Most analytical data were obtained within less than 3 days.

Figure 2.28 Distribution of days used for analysis

Clear relationship between date of analysis and flagged data was not suggested, however, it was encouraged to analyze samples as soon as possible if the samples were distributed.

2.4 Comparison with past surveys

Since the beginning of EANET, inter-laboratory comparison on wet deposition reached the 19th survey. The results showing the percentages of flagged data and percentage of data that satisfied the DQO are shown in Figure 2.29. Hereafter, sample No. 161w and sample No. 162w were treated as high and low concentration samples respectively.

The percentages of data within DQO for the sample No. 161w and No. 162w were 90.8% and 76.1% respectively. Compared to previous survey, the percentage of data within DQO was slightly increased in high concentration samples and decreased in low concentration samples.

Figure 2.29 Comparison of results from the inter-laboratory comparison projects

Figure 2.30 shows the trend of the prepared values and the percentage of the flagged data. The percentages of the flagged data were relatively high in cations than anions through the series of surveys. It is suggested that the concentration of ions affect to the percentage of flagged data. For example, while the prepared value of Ca^{2+} in low concentration samples was gradually decreased from 2014 to 2016, the percentage of flagged data of Ca^{2+} was increased from 27.3% to 62.5%.

Figure 2.30 Comparison for each parameter in inter-laboratory comparison (ILC) project

Figure 2.30 Comparison for each parameter in ILC project (continued)

As shown in figure 2.31, the total number of data in this survey was 652.

Figure 2.31 The number of participating laboratories and data in the inter-laboratory comparison projects on wet deposition

2.5 Recommendations for improvement

The fundamental matters for QA/QC on measurements and analyses of samples are described in *Technical Manual for Wet Deposition Monitoring in East Asia -2010*.

Additionally, the NC showed the following matters for the improvement of data accuracy.

2.5.1 Measurement and Analysis

▶ Technical Manual for Wet Deposition Monitoring in East Asia -2010 defined EANET DQO values for Detection limits and Determination limits. But both limits exceed the DQO in some laboratories. Both limits depend on the standard deviation from five times analysis of the standard solution which has concentration levels near determination limit of the analytical method. The standard deviation can be improved by method such as use of more purified water. Then Detection limits and Determination limits would be improved.

2.5.2 Data control

- After determining all the analytical parameters, the data check by calculating R_1 and R_2 values is important. Especially, R_1 and R_2 have to meet allowable ranges according to *Technical Manual for Wet Deposition Monitoring in East Asia -2010*. If the values exceed their allowable ranges, the data set is doubtful and reanalysis shall be carried out after rechecking analytical instruments and analytical procedures.
- ▶ Participating laboratories are encouraged to check precision of results in prior to submission.

It should be noted that precision is greatly affected by concentration. To grasp the state of precision, drawing correlation curve between concentration and precision is effective.

▶ After ILC was done, artificial samples can be used as Standard Reference Material as described in *Technical Manual for Wet Deposition Monitoring in East Asia -2010*. The concentration of artificial samples will be stable until next ILC when they are preserved in the refrigerator. Each laboratory should measure Standard Reference Materials in the analytical sample stream.

References

EANET (2010). *Technical Manual for Wet Deposition Monitoring in East Asia -2010*. Asia Center for Air Pollution Research, Niigata, Japan, 113p.

Appendix 2.1 Data precision of submitted data

Data precision is one of the most important factors of data quality. Relative standard deviation (R.S.D.), which is one of the parameter to indicate precision, is defined by the equation below.

R.S.D. = σ / Va × 100%

In Appendix Table 2.1.1 and Appendix Table 2.1.2, data precisions calculated from the submitted results are shown. Sample No. 161w of higher concentration had a tendency to show better R.S.D. than sample No. 162w of lower concentration in each constituent. It was suggested that R.S.D. was greatly affected by sample concentration.

Participating laboratories are encouraged to check the precision of data in prior to submission. Correlation between sample concentration and precision should be also noted, because sample concentration could be the greatest factor to determine precision. Therefore, it is important to grasp the state of data quality during daily analysis. For example, drawing a correlation curve between concentration of standard solutions and R.S.D. of repeat analysis is effective.

Appendix Table 2.1.1 Data precision (R.S.D.) of sample No. 161w

Lab. ID	pH as H ⁺	EC	SO ₄ ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺
	%	%	%	%	%	%	%	%	%	%
CN01	16.7	0.2	0.3	0.6	0.5	0.2	1.9	1.6	4.7	2.8
CN02	1.9	0.5	0.1	0.2	0.2	0.2	0.4	0.0	0.2	0.0
CN03	1.5	0.3	0.8	0.3	1.5	0.4	1.2	1.5	1.8	1.0
CN04	8.8	1.2	0.6	0.9	1.4	0.9	1.1	2.1	1.0	1.6
ID01	8.4	1.3	0.8	3.2	2.2	4.9	7.2	7.2	2.6	1.9
ID02	5.4	0.2	0.7	0.7	0.4	0.2	0.4	2.9	3.7	1.1
ID03	15.6	1.8	0.6	1.4	2.0	2.3	2.7	2.0	4.6	3.9
JP01	2.1	2.1	1.2	2.0	1.4	1.4	1.7	2.6	1.3	1.2
JP03	1.0	0.2	0.3	0.9	0.8	1.1	0.3	0.6	0.3	0.8
JP04	3.5	0.6	0.2	0.0	0.2	0.6	2.8	2.0	1.2	1.5
JP07	8.1	0.9	0.1	0.0	0.4	1.5	0.3	1.0	0.7	0.9
JP08	7.9	1.5	0.2	0.2	0.4	1.0	2.9	2.4	0.4	1.1
JP09	6.1	1.0	0.2	0.4	0.2	0.3	0.3	0.5	0.2	0.9
JP10	1.8	0.3	0.3	0.4	0.4	0.5	0.5	0.6	0.5	0.8
JP11	3.7	0.9	0.3	0.2	0.3	3.8	2.2	1.3	2.9	2.8
MY01	5.0	0.2	0.4	0.3	1.1	0.4	0.9	1.3	0.9	1.2
MN01	6.8	1.8	0.4	1.7	2.0					
MM01	16.4	2.0	2.1	6.5	3.7	1.0	1.6	6.3	7.4	7.2
PH01	11.0	1.5	0.6	1.0	0.8	3.6	0.9	3.2	8.6	5.0
PH02	7.4	0.7	0.3	0.4	0.3	6.1	6.4	4.7	4.4	2.3
KR01	17.4	0.2	0.9	1.6	0.7	0.2	5.3	5.5	0.9	1.6
RU01	3.1	0.6	0.1	0.5	0.3	0.8	0.2	0.0	0.0	0.8
RU02	3.2	11.5	0.5	0.5	0.7	1.8	1.5	1.6	0.5	1.4
TH01	1.8	0.7	1.5	1.1	4.4	0.7	0.7	1.1	0.6	0.9
TH02	2.3	0.4	0.4	0.3	0.4	0.5	0.6	1.8	0.3	0.0
TH04	4.0	0.2	1.3	1.5	0.6	0.8	5.0	4.7	2.5	3.4
TH05	7.2	0.8	0.3	2.4	0.4	1.7	2.5	5.1	3.4	8.4
TH06	1.5	0.6	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.5
TH08	2.5	0.2								
VN01	3.5	2.6	0.2	0.2	0.5	1.2	1.4	2.6	1.8	0.9
VN02	2.0	0.4	0.7	1.4	1.2	1.3	3.3	4.9	1.5	5.0
VN03	1.2	0.5	0.3	0.2		0.1	0.9	0.0	0.0	0.0
VN04	2.2	0.3	0.1	0.2	0.1	2.2	0.4	1.1	0.1	0.6
VN05	11.6	0.2	1.6	0.0	4.3	0.0	0.0	2.2	3.8	1.7
Number of data	34	34	33	33	32	32	32	32	32	32
Minimum	1.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25% value	2.1	0.3	0.2	0.2	0.3	0.4	0.4	1.0	0.3	0.9
Median	3.8	0.6	0.4	0.5	0.6	0.9	1.1	1.9	1.1	1.2
75% value	8.1	1.2	0.7	1.4	1.4	1.5	2.5	3.0	3.0	2.4
Maximum	17.4	11.5	2.1	6.5	4.4	6.1	7.2	7.2	8.6	8.4

Note: R.S.D for "pH as H^+ " was calculated after pH value was converted to H^+ concentration; "--", Not measured

Appendix Table 2.1.2 Data precision (R.S.D.) of sample No. 162w

Lab. ID	pH as H ⁺	EC	SO4 ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺
	%	%	%	%	%	%	%	%	%	%
CN01	4.1	0.0	1.2	1.8	1.1	0.7	9.1	4.2	6.3	3.0
CN02	1.7	0.9	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.0
CN03	1.7	0.9	0.7	0.8	1.0	0.9	3.3	4.3	1.3	3.7
CN04	5.2	1.5	1.3	1.8	1.2	2.2	3.0	6.1	2.4	2.1
ID01	34.5	4.7	2.1	1.4	5.1	1.0	11.7	25.3	23.3	2.1
ID02	4.3	0.8	2.0	2.3	1.9	0.4	0.8	0.0	5.7	3.4
ID03	14.9	1.7	3.8	2.8	3.1	6.2	7.6	21.6	6.6	9.8
JP01	3.9	2.9	0.5	1.4	0.9	0.4	0.0	2.6	1.3	0.0
JP03	1.0	0.5	0.8	1.7	1.0	0.8	0.0	3.3	2.1	0.0
JP04	6.0	0.7	0.0	0.0	0.6	1.0	4.0	8.1	5.9	7.1
JP07	6.2	0.9	0.5	1.1	0.4	0.4	0.0	7.2	2.3	2.8
JP08	33.9	2.9	0.0	0.6	0.6	0.3	0.8	2.9	1.0	2.9
JP09	16.2	2.2	0.5	0.5	0.7	0.5	0.0	2.9	0.0	0.0
JP10	1.4	0.5	0.3	0.5	0.4	0.4	0.7	1.9	0.0	0.0
JP11	2.5	0.5	0.4	0.6	0.4	10.7	15.1	5.7	35.3	9.5
MY01	4.1	1.3	0.4	0.8	0.9	0.7	0.7	5.4	2.1	4.2
MN01	6.6	1.5	1.5	1.9	2.1					
MM01	31.5	2.4	18.7	16.7	17.6	3.3	5.2	7.6	28.4	18.0
PH01	34.2	4.2	1.7	1.1	1.7	4.2	1.7	9.7	8.4	25.8
PH02	6.6	1.2	1.3	4.2	1.2	3.3	1.8	13.1	4.4	7.2
KR01	58.1	0.6	11.0	2.2	1.5	4.9	4.9	15.5	35.3	8.6
RU01	2.9	1.0	0.4	0.0	0.4	1.0	0.7	2.6	0.0	0.0
RU02	3.7	4.3	1.5	2.1	1.6	2.1	1.0	1.9	3.3	6.5
TH01	3.1	0.8	0.9	0.8	1.2	0.8	0.8	2.4	3.1	2.8
TH02	4.9	0.0	0.0	0.4	0.0	0.9	0.7	2.5	1.4	1.8
TH04	34.7	0.8	0.8	0.9	7.4	7.5	9.8	7.2	6.3	9.1
TH05	23.1	2.5	0.0	0.7	0.6	4.1	10.2	51.0	12.8	7.0
TH06	1.4	0.0	0.0	0.0	0.0	0.4	0.0	1.7	0.0	0.0
TH08	1.8	1.1								
VN01	3.8	2.2	1.0	0.6	0.6	2.8	0.8	2.4	1.1	2.2
VN02	2.6	0.9	1.9	2.5	1.9	3.4	6.1	7.4	4.0	7.4
VN03	1.4	0.6	0.0	0.0		0.4	0.0	0.0	0.0	0.0
VN04	2.9	0.9	0.5	0.6	0.9	0.6	1.5	2.9	1.0	2.8
VN05	6.8	1.0	3.3	0.0	3.3	0.0	1.5	4.1	4.5	4.2
Number of data	34	34	33	33	32	32	32	32	32	32
Minimum	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25% value	2.7	0.7	0.4	0.5	0.6	0.4	0.7	2.5	1.1	1.3
Median	4.2	1.0	0.8	0.8	1.0	0.9	1.3	4.2	2.7	2.9
75% value	12.9	2.1	1.5	1.8	1.7	3.3	5.0	7.5	6.3	7.2
Maximum	58.1	4.7	18.7	16.7	17.6	10.7	15.1	51.0	35.3	25.8

Note: R.S.D for "pH as H⁺" was calculated after pH value was converted to H⁺ concentration; "--", Not measured

Appendix 2.2 Analytical results submitted by the laboratories

Appendix Table 2.2.1 Analytical data concerning sample No. 161w

1 1		•			0	1				
Lab. ID	pН	EC	SO ₄ ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K	Ca ²⁺	Mg ²⁺
		mS/m	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L	μmol/L
CN01	4.98	2.32	43.1	19.0	29.4	32.3	16.1	7.7	27.3	7.5
CN02	4.86	2.34	43.1	20.6	32.1	31.3	18.4	7.1	28.0	7.0
CN03	4.96	2.25	44.5	21.1	31.0	32.1	8.5	7.2	28.0	7.1
CN04	4.92	2.28	45.5	21.0	32.8	31.8	18.6	7.0	28.6	7.0
ID01	4.94	2.25	42.4	19.9	30.9	27.0	18.0	7.9	30.4	6.5
ID02	4.97	2.08	42.1	20.6	30.9	29.7	18.2	6.0	26.5	7.2
ID03	5.03	2.25	44.6	20.8	32.0	30.9	19.7	7.8	28.8	7.6
JP01	4.90	2.38	43.0	20.0	31.0	32.3	17.5	6.7	28.1	7.0
JP03	4.89	2.31	45.6	21.2	32.4	32.7	18.3	6.9	28.6	6.6
JP04	4.90	2.34	43.9	20.5	31.8	30.5	17.9	6.7	28.1	6.5
JP07	4.85	2.40	44.0	20.2	32.1	29.2	18.4	6.5	26.8	6.5
JP08	4.88	2.27	44.6	20.6	32.3	31.2	19.1	6.8	30.8	6.8
JP09	4.98	2.27	43.9	20.6	32.2	31.7	18.5	6.9	28.6	7.1
JP10	4.89	2.35	43.2	20.5	31.7	32.0	18.6	7.0	28.4	7.0
JP11	5.16	2.21	44.5	20.3	32.5	34.2	19.6	7.5	28.9	7.6
MY01	4.88	2.37	43.4	18.2	29.1	30.8	18.0	6.2	29.6	5.7
MN01	4.53	2.33	48.6	20.3	29.5					
MM01	4.74	3.67	43.8	19.2	31.9	29.8	16.5	6.3	28.3	5.9
PH01	4.83	2.17	43.6	19.1	30.7	32.8	19.2	7.0	31.6	6.9
PH02	4.91	2.33	43.4	18.5	30.7	33.0	19.6	6.5	31.7	6.8
KR01	4.98	2.31	42.3	20.2	30.9	36.1	19.0	6.5	27.4	5.6
RU01	4.85	2.36	43.1	20.6	31.5	27.1	18.5	6.9	25.2	6.2
RU02	5.52	1.67	22.8	27.4	35.3	25.6	24.4	9.0	20.2	8.2
TH01	4.89	2.35	46.7	20.1	35.1	37.8	17.2	6.3	29.0	6.9
TH02	4.97	2.33	44.6	20.6	31.6	31.3	18.5	7.3	27.9	6.9
TH04	4.78	2.35	46.2	20.9	33.1	30.2	17.5	6.6	32.1	7.1
TH05	4.91	2.30	44.7	17.2	30.4	35.1	15.9	5.3	33.9	7.4
TH06	4.86	2.38	44.5	21.2	31.6	31.3	19.0	6.9	26.4	9.0
TH08	4.82	2.22								
VN01	4.73	2.36	45.2	20.8	32.8	34.6	19.4	7.1	26.4	7.2
VN02	5.17	2.09	43.8	21.3	31.1	30.5	20.0	6.0	31.0	6.7
VN03	4.83	2.92	43.4	31.2		29.4	22.2	5.7	33.8	6.9
VN04	5.10	2.45	47.2	24.1	33.7	39.2	22.8	7.8	35.1	8.4
VN05	5.44	2.28	38.8	23.5	30.0	26.3	19.7	5.7	32.4	5.5
Prepared value	4.85	2.39	44.5	21.0	32.3	31.5	18.3	6.9	28.8	7.0
Number of data	33	33	32	32	32	32	31	32	31	32
Average	4.92	2.30	44.1	20.6	31.7	31.6	18.8	6.8	29.3	6.9
Minimum	4.53	1.67	38.8	17.2	29.1	25.6	15.9	5.3	25.2	5.5
Maximum	5.44	2.92	48.6	27.4	35.3	39.2	24.4	9.0	35.1	9.0
Standard deviation	0.15	0.17	1.71	1.76	1.39	2.95	1.74	0.73	2.39	0.74

Note: The outliers judged by 3S.D. method were painted with light mesh and were excluded from statistics; "---", Not measured

Appendix Table 2.2.2 Analytical data concerning sample No. 162w

CN01 S.13 0.69 10.2 8.1 9.3 13.5 3.3 2.4 4.1 3.3
CN02
CN03
CN04 5.27 0.69 10.4 8.1 9.0 12.7 5.8 1.5 4.1 2.1 ID01 5.73 0.66 10.1 6.9 9.4 11.7 4.5 1.5 5.9 1.6 ID02 5.34 0.62 9.9 8.6 7.9 13.4 6.6 2.1 8.3 2.5 ID03 5.49 0.65 10.7 8.6 8.9 13.5 7.6 2.5 5.8 2.6 JP01 5.30 0.75 10.2 8.3 8.3 12.3 5.8 1.7 3.4 1.6 JP03 5.28 0.70 10.3 8.6 8.5 13.4 6.4 1.5 3.7 2.0 JP04 5.29 0.68 10.2 8.1 8.4 12.6 6.3 1.7 3.6 1.6 JP07 5.29 0.75 10.0 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1 ———————————————————————————————————
IDO1
IDO2
ID03
JP01 5.30 0.75 10.2 8.3 8.3 12.3 5.8 1.7 3.4 1.6 JP03 5.28 0.70 10.3 8.6 8.5 13.4 6.4 1.5 3.7 2.0 JP04 5.29 0.68 10.2 8.1 8.4 12.6 6.3 1.7 3.6 1.6 JP07 5.29 0.75 10.0 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.6 1.7 5.1 1.8 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 <t< td=""></t<>
JP03 5.28 0.70 10.3 8.6 8.5 13.4 6.4 1.5 3.7 2.0 JP04 5.29 0.68 10.2 8.1 8.4 12.6 6.3 1.7 3.6 1.6 JP07 5.29 0.75 10.0 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.6 1.7 5.1 1.8 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 <tr< td=""></tr<>
JP04 5.29 0.68 10.2 8.1 8.4 12.6 6.3 1.7 3.6 1.6 JP07 5.29 0.75 10.0 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.6 1.7 5.1 1.8 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1 11.5 5.5 1.5 3.0 1.4 <tr< td=""></tr<>
JP07 5.29 0.75 10.0 8.2 8.5 13.1 6.1 1.5 3.4 1.6 JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.6 1.7 5.1 1.8 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1
JP08 5.57 0.68 10.2 8.2 8.5 13.1 6.6 1.7 5.1 1.8 JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1
JP09 5.37 0.68 10.1 8.6 8.6 13.3 6.5 1.7 3.7 2.0 JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1
JP10 5.25 0.72 9.9 8.2 8.3 13.4 6.8 1.8 3.6 1.9 JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1 <
JP11 5.70 0.65 9.9 7.8 8.3 12.0 6.5 2.3 2.7 2.0 MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1 <td< td=""></td<>
MY01 5.21 0.75 8.7 6.6 6.7 12.9 5.9 1.4 3.1 1.3 MN01 4.87 0.71 10.4 7.8 7.1 -
MN01 4.87 0.71 10.4 7.8 7.1
MM01 5.25 1.11 9.4 7.6 7.3 11.5 5.5 1.5 3.0 1.4 PH01 5.31 0.65 9.6 7.7 7.9 15.1 7.0 1.8 5.4 1.3 PH02 5.31 0.72 9.3 7.3 7.9 12.5 6.9 1.6 4.9 1.3 KR01 5.59 0.72 9.2 8.6 7.9 16.1 6.6 1.4 5.4 1.3 RU01 5.20 0.69 10.1 8.2 8.4 11.0 6.1 1.7 2.7 1.6 RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 <tr< td=""></tr<>
PH01 5.31 0.65 9.6 7.7 7.9 15.1 7.0 1.8 5.4 1.3 PH02 5.31 0.72 9.3 7.3 7.9 12.5 6.9 1.6 4.9 1.3 KR01 5.59 0.72 9.2 8.6 7.9 16.1 6.6 1.4 5.4 1.3 RU01 5.20 0.69 10.1 8.2 8.4 11.0 6.1 1.7 2.7 1.6 RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 <t< td=""></t<>
PH02 5.31 0.72 9.3 7.3 7.9 12.5 6.9 1.6 4.9 1.3 KR01 5.59 0.72 9.2 8.6 7.9 16.1 6.6 1.4 5.4 1.3 RU01 5.20 0.69 10.1 8.2 8.4 11.0 6.1 1.7 2.7 1.6 RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 <t< td=""></t<>
KR01 5.59 0.72 9.2 8.6 7.9 16.1 6.6 1.4 5.4 1.3 RU01 5.20 0.69 10.1 8.2 8.4 11.0 6.1 1.7 2.7 1.6 RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
RU01 5.20 0.69 10.1 8.2 8.4 11.0 6.1 1.7 2.7 1.6 RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
RU02 5.63 0.82 14.9 10.6 11.6 11.4 21.3 7.7 4.7 2.4 TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH01 5.55 0.66 9.5 7.1 8.3 15.9 5.9 1.4 3.5 1.8 TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH02 5.30 0.70 9.5 8.0 8.1 13.5 6.5 2.0 3.8 1.9 TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH04 5.42 0.69 10.6 8.5 8.4 13.5 6.3 1.8 6.0 2.5 TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH05 5.33 0.67 9.7 6.2 7.8 12.4 5.2 1.2 2.7 2.2 TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH06 5.25 0.74 10.6 9.1 11.3 12.2 6.6 2.0 4.8 2.8
TH08 5.17 0.72
VN01 5.05 0.75 11.0 8.0 8.8 10.8 6.4 1.8 5.0 2.0
VN02 5.41 0.61 9.4 8.7 <u>8.3</u> 11.0 8.0 1.6 5.2 2.4
VN03 5.24 0.72 9.4 9.3 11.9 8.5 1.8 5.5 2.4
VN04 5.12 0.85 11.4 9.6 9.1 13.8 7.7 1.8 5.1 2.4
VN05 5.62 0.68 9.6 9.0 8.7 11.1 7.4 1.9 5.5 2.0
Prepared value 5.30 0.67 10.2 8.4 8.5 13.0 6.5 1.7 3.7 1.8
Number of data 34 33 32 33 31 32 31 31 32
Average 5.33 0.70 10.0 8.2 8.4 12.8 6.3 1.7 4.3 2.0
Minimum 4.87 0.61 8.7 6.2 6.7 10.8 3.3 1.2 2.7 1.3
Maximum 5.73 0.85 11.4 10.6 11.3 16.1 8.5 2.5 6.0 3.3
Standard deviation 0.19 0.05 0.55 0.83 0.79 1.29 1.10 0.29 1.01 0.47 Note: The outliers judged by 3S D method were painted with light mesh and were excluded from statistics:

Note: The outliers judged by 3S.D. method were painted with light mesh and were excluded from statistics; "---", Not measured

Appendix 2.3 Normalized data

Appendix Table 2.3.1 Deviation% from prepared values of sample No. 161w

Lab. ID	pН	EC	SO ₄ ²⁻	NO ₃	Cl	$\mathrm{NH_4}^+$	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}
	%	%	%	%	%	%	%	%	%	%
CN01	2.7	-2.9	-3.1	-9.5	-9.0	2.5	-12.0	11.6	-5.2	7.1
CN02	0.2	-2.1	-3.1	-1.9	-0.6	-0.6	0.5	2.9	-2.8	0.0
CN03	2.3	-5.9	0.0	0.5	-4.0	1.9	-53.6	4.3	-2.8	1.4
CN04	1.4	-4.6	2.2	0.0	1.5	1.0	1.6	1.4	-0.7	0.0
ID01	1.9	-5.9	-4.7	-5.2	-4.3	-14.3	-1.6	14.5	5.6	-7.1
ID02	2.5	-13.0	-5.4	-1.9	-4.3	-5.7	-0.5	-13.0	-8.0	2.9
ID03	3.7	-5.9	0.2	-1.0	-0.9	-1.9	7.7	13.0	0.0	8.6
JP01	1.0	-0.4	-3.4	-4.8	-4.0	2.5	-4.4	-2.9	-2.4	0.0
JP03	0.8	-3.3	2.5	1.0	0.3	3.8	0.0	0.0	-0.7	-5.7
JP04	1.0	-2.1	-1.3	-2.4	-1.5	-3.2	-2.2	-2.9	-2.4	-7.1
JP07	0.0	0.4	-1.1	-3.8	-0.6	-7.3	0.5	-5.8	-6.9	-7.1
JP08	0.6	-5.0	0.2	-1.9	0.0	-1.0	4.4	-1.4	6.9	-2.9
JP09	2.7	-5.0	-1.3	-1.9	-0.3	0.6	1.1	0.0	-0.7	1.4
JP10	0.8	-1.7	-2.9	-2.4	-1.9	1.6	1.6	1.4	-1.4	0.0
JP11	6.4	-7.5	0.0	-3.3	0.6	8.6	7.1	8.7	0.3	8.6
MY01	0.6	-0.8	-2.5	-13.3	-9.9	-2.2	-1.6	-10.1	2.8	-18.6
MN01	-6.6	-2.5	9.2	-3.3	-8.7					
MM01	-2.3	53.6	-1.6	-8.6	-1.2	-5.4	-9.8	-8.7	-1.7	-15.7
PH01	-0.4	-9.2	-2.0	-9.0	-5.0	4.1	4.9	1.4	9.7	-1.4
PH02	1.2	-2.5	-2.5	-11.9	-5.0	4.8	7.1	-5.8	10.1	-2.9
KR01	2.7	-3.3	-4.9	-3.8	-4.3	14.6	3.8	-5.8	-4.9	-20.0
RU01	0.0	-1.3	-3.1	-1.9	-2.5	-14.0	1.1	0.0	-12.5	-11.4
RU02	13.8	-30.1	-48.8	30.5	9.3	-18.7	33.3	30.4	-29.9	17.1
TH01	0.8	-1.7	4.9	-4.3	8.7	20.0	-6.0	-8.7	0.7	-1.4
TH02	2.5	-2.5	0.2	-1.9	-2.2	-0.6	1.1	5.8	-3.1	-1.4
TH04	-1.4	-1.7	3.8	-0.5	2.5	-4.1	-4.4	-4.3	11.5	1.4
TH05	1.2	-3.8	0.4	-18.1	-5.9	11.4	-13.1	-23.2	17.7	5.7
TH06	0.2	-0.4	0.0	1.0	-2.2	-0.6	3.8	0.0	-8.3	28.6
TH08	-0.6	-7.1								
VN01	-2.5	-1.3	1.6	-1.0	1.5	9.8	6.0	2.9	-8.3	2.9
VN02	6.6	-12.6	-1.6	1.4	-3.7	-3.2	9.3	-13.0	7.6	-4.3
VN03	-0.4	22.2	-2.5	48.6		-6.7	21.3	-17.4	17.4	-1.4
VN04	5.2	2.5	6.1	14.8	4.3	24.4	24.6	13.0	21.9	20.0
VN05	12.2	-4.6	-12.8	11.9	-7.1	-16.5	7.7	-17.4	12.5	-21.4
Number of data	34	34	33	33	32	32	32	32	32	32
Average	1.8	-2.1	-2.3	-0.2	-1.9	0.2	1.2	-0.9	0.7	-0.8
Minimum	-6.6	-30.1	-48.8	-18.1	-9.9	-18.7	-53.6	-23.2	-29.9	-21.4
Maximum	13.8	53.6	9.2	48.6	9.3	24.4	33.3	30.4	21.9	28.6

Note: "---", Not measured

Appendix Table 2.3.2 Deviation% from prepared values of sample No. 162w

Lab. ID	pН	EC	SO4 ²⁻	NO ₃	Cl	NH4 ⁺	Na ⁺	K	Ca ²⁺	Mg ²⁺
	%	%	%	%	%	%	%	%	%	%
CN01	-3.2	3.0	0.0	-3.6	9.4	3.8	-49.2	41.2	10.8	83.3
CN02	-1.1	3.0	0.0	-1.2	7.1	-10.0	-6.2	5.9	8.1	16.7
CN03	-0.6	3.0	-1.0	-3.6	2.4	-10.0	-47.7	5.9	10.8	16.7
CN04	-0.6	3.0	2.0	-3.6	5.9	-2.3	-10.8	-11.8	10.8	16.7
ID01	8.1	-1.5	-1.0	-17.9	10.6	-10.0	-30.8	-11.8	59.5	-11.1
ID02	0.8	-7.5	-2.9	2.4	-7.1	3.1	1.5	23.5	124.3	38.9
ID03	3.6	-3.0	4.9	2.4	4.7	3.8	16.9	47.1	56.8	44.4
JP01	0.0	11.9	0.0	-1.2	-2.4	-5.4	-10.8	0.0	-8.1	-11.1
JP03	-0.4	4.5	1.0	2.4	0.0	3.1	-1.5	-11.8	0.0	11.1
JP04	-0.2	1.5	0.0	-3.6	-1.2	-3.1	-3.1	0.0	-2.7	-11.1
JP07	-0.2	11.9	-2.0	-2.4	0.0	0.8	-6.2	-11.8	-8.1	-11.1
JP08	5.1	1.5	0.0	-2.4	0.0	0.8	1.5	0.0	37.8	0.0
JP09	1.3	1.5	-1.0	2.4	1.2	2.3	0.0	0.0	0.0	11.1
JP10	-0.9	7.5	-2.9	-2.4	-2.4	3.1	4.6	5.9	-2.7	5.6
JP11	7.5	-3.0	-2.9	-7.1	-2.4	-7.7	0.0	35.3	-27.0	11.1
MY01	-1.7	11.9	-14.7	-21.4	-21.2	-0.8	-9.2	-17.6	-16.2	-27.8
MN01	-8.1	6.0	2.0	-7.1	-16.5					
MM01	-0.9	65.7	-7.8	-9.5	-14.1	-11.5	-15.4	-11.8	-18.9	-22.2
PH01	0.2	-3.0	-5.9	-8.3	-7.1	16.2	7.7	5.9	45.9	-27.8
PH02	0.2	7.5	-8.8	-13.1	-7.1	-3.8	6.2	-5.9	32.4	-27.8
KR01	5.5	7.5	-9.8	2.4	-7.1	23.8	1.5	-17.6	45.9	-27.8
RU01	-1.9	3.0	-1.0	-2.4	-1.2	-15.4	-6.2	0.0	-27.0	-11.1
RU02	6.2	22.4	46.1	26.2	36.5	-12.3	227.7	352.9	27.0	33.3
TH01	4.7	-1.5	-6.9	-15.5	-2.4	22.3	-9.2	-17.6	-5.4	0.0
TH02	0.0	4.5	-6.9	-4.8	-4.7	3.8	0.0	17.6	2.7	5.6
TH04	2.3	3.0	3.9	1.2	-1.2	3.8	-3.1	5.9	62.2	38.9
TH05	0.6	0.0	-4.9	-26.2	-8.2	-4.6	-20.0	-29.4	-27.0	22.2
TH06	-0.9	10.4	3.9	8.3	32.9	-6.2	1.5	17.6	29.7	55.6
TH08	-2.5	7.5								
VN01	-4.7	11.9	7.8	-4.8	3.5	-16.9	-1.5	5.9	35.1	11.1
VN02	2.1	-9.0	-7.8	3.6	-2.4	-15.4	23.1	-5.9	40.5	33.3
VN03	-1.1	7.5	-7.8	10.7		-8.5	30.8	5.9	48.6	33.3
VN04	-3.4	26.9	11.8	14.3	7.1	6.2	18.5	5.9	37.8	33.3
VN05	6.0	1.5	-5.9	7.1	2.4	-14.6	13.8	11.8	48.6	11.1
Number of data	34	34	33	33	32	32	32	32	32	32
Average	0.6	6.5	-0.6	-2.4	0.5	-1.9	3.9	13.8	19.8	10.8
Minimum	-8.1	-9.0	-14.7	-26.2	-21.2	-16.9	-49.2	-29.4	-27.0	-27.8
Maximum	8.1	65.7	46.1	26.2	36.5	23.8	227.7	352.9	124.3	83.3

Note: "---", Not measured

Appendix Figure 2.4.5 Data distribution for Cl⁻ (Left: 161w, Right: 162w)

Appendix Figure 2.4.10 Data distribution for Mg²⁺ (Left: 161w, Right: 162w)

3. 12th INTER-LABORATORY COMPARISON PROJECT ON DRY DEPOSITION

3.1 Introduction

In the Inter-laboratory Comparison on dry deposition, impregnated filters which contained either SO₄²-and Cl⁻, or NH₄⁺, were prepared and distributed to the participating laboratories by the Network Center (NC) in October 2016. Most of the laboratories which monitor with the filter pack method in EANET joined this activity and submitted their analytical results to the NC. These results were compared with the corresponding prepared value and statistically analyzed.

3.2 Procedures

3.2.1 Participating Laboratories

A total of 28 laboratories in charge of EANET dry monitoring participated in this 12th activity and 24 laboratories submitted the results to the NC. The participating laboratories and data submission status are shown in Table 1.1.

3.2.2 Description of Samples

Two kinds of filter samples, one contained two ions (SO₄²-and Cl⁻), the other contained one ion (NH₄⁺), were prepared and distributed to the laboratories. Blank filters, which were impregnated with K₂CO₃ or H₃PO₄ but did not contain any SO₄²-, Cl⁻, or NH₄⁺, were also prepared and distributed. The details of the filter samples are described in Table 3.1. The analytical precision and accuracy on the individual analyte were summarized through statistical calculations of the submitted analytical results from each participating laboratory.

Table 3.1 Outline of filter samples

Name	Details	Container	Number of filters	Note
No.161d-1	Alkali (K2CO3)	Polyethylene	3	Two kinds of the standard solutions
	impregnated filter	centrifuge tube		which contained known concentration
				of sulfate or chloride ion were added.
No.161d-2	Acid (H ₃ PO ₄)	Polyethylene	3	One kind of the standard solution
	impregnated filter	centrifuge tube		which contained known concentration
				of ammonium ion was added.

No.162d-1	Alkali (K2CO3)	Polyethylene	3	Two kinds of the standard solutions
	impregnated filter	centrifuge tube		which contained known concentration
				of sulfate or chloride ion were added.
No.162d-2	Acid (H ₃ PO ₄)	Polyethylene	3	One kind of the standard solution
	impregnated filter	centrifuge tube		which contained known concentration
				of ammonium ion was added.
No.163d-1	Alkali (K ₂ CO ₃)	Polyethylene	3	Blank
	impregnated filter	centrifuge tube		
No.163d-2	Acid (H ₃ PO ₄)	Polyethylene	3	Blank
	impregnated filter	centrifuge tube		

3.2.3 Analytes

All participating laboratories were expected to analyze these filter samples and to submit their values as the net quantity of each ion $(SO_4^{2-}, Cl^- \text{ and } NH_4^+)$ in micrograms (μg) .

3.2.4 Analytical Methodologies

The recommended procedure for sample analyses on the filter pack method is described in "*Technical Manual for Air Concentration Monitoring in East Asia*" (EANET, 2013). As each filter sample was put in a centrifuge tube, a solvent was directly poured into the tube for extraction. The extraction procedure is as follows;

(1) Sample No.161d-1, No.162d-1, No.163d-1

Add 20 mL of H_2O_2 solution (0.05% v/v) as an extracting solvent into each centrifuge tube, then shake them for 20 minutes.

(2) Sample No.161d-2, No.162d-2, No.163d-2

Add 20 mL of pure water (EC<0.15 mS L⁻¹) as an extracting solvent into each centrifuge tube, then shake or agitate them for 20 minutes.

(3) Filtration

Remove insoluble matter from the solution using a membrane filter (pore size $0.45 \mu m$). The membrane filter must be prewashed with pure water (more than 100 mL) before filtration. After filtration, those filtrates are assigned identification numbers and sealed tightly.

- Note 1) Carry out the analyses immediately after extraction.
- Note 2) In principle, it is strongly recommended that the filtrate be analyzed immediately after extraction, however, in the case that they need to be kept for certain reasons, store them in a refrigerator at 4°C.

The participating laboratories were expected to use the analytical methods specified in "*Technical Manual for Wet Deposition Monitoring in East Asia* – 2010" (EANET, 2010) in Table 3.2.

Table 3.2 Analytical methods specified in the Technical Manual

Analyte	Analytical method
SO ₄ ²⁻ ,Cl ⁻	Ion Chromatography (preferably with suppressor) Spectrophotometry
NH ₄ ⁺	Ion Chromatography Spectrophotometry (Indophenol Blue)

3.2.5 Data Check Procedures

All participating laboratories were requested to report as the net quantity of each ion (SO_4^{2-}, Cl^-) and NH_4^+ in the filter sample.

Each quantity (M_{sol}) is calculated as follows:

$$M_{sol} = C_{sol} \quad x \quad V_{sol} \tag{1}$$

where M_{sol} : quantity of each component in the filtrate (µg);

 C_{sol} : concentration of each component in the filtrate (mg L⁻¹);

 V_{sol} : volume of the solvent (20 mL);

The net quantity of each ion $(netM_{sol})$ is calculated as follows:

$$net M_{sol} = M_{sol, Sample} - M_{sol, Blank}$$
 (2)

where $netM_{sol}$: net quantity of each ion on the filter.

 $M_{\text{sol,Sample}}$: quantity (µg) of each component in the filtrate from sample No.161d-1,No.161d-2,No.162d-1 and No.162d-2;

 $M_{\text{sol,Blank}}$: the median quantity (µg) in the filtrate from blank sample No.163d-1 and No.163d-2.

3.3 Results

The NC distributed the filter samples to 28 laboratories in the participating countries of EANET, and received their results from 24 laboratories. The results compared to the prepared values are

summarized in Table 3.3. The average, minimum, maximum, standard deviation (S.D.) and number of data (N) were calculated from each analyzed ion quantity. Analytical results of Samples No.161d and No.162d are shown in Table 3.5 and Table 3.7.

Outliers, defined as those results exceeding three standard deviations, should be rejected before their calculation and this time one result was rejected.

As shown in Table 3.3, the deviations ($\Delta V/Vp$) for SO_4^{2-} in Sample No. 161d and Sample No.162d were -12.9% and -8.6%. The deviations for Cl⁻ in Sample No. 161d and Sample No.162d were -6.9% and -5.5%. The deviations for NH₄⁺ in Sample No. 161d and Sample No.162d were -1.0% and -4.5%.

The Data Quality Objectives (DQOs) of EANET are specified that determined values are expected to fall within $\pm 15\%$ deviation from the prepared values in *Technical Manual for Air Concentration Monitoring in East Asia* (2013). Each laboratory analyzed each sample 3 times, averaged the values, and these average values were compared with the corresponding prepared values for this report. A flag "E" indicates that its deviation exceeds $\pm 15\%$ but not $\pm 30\%$, and a flag "X" indicates that its deviation exceeds $\pm 30\%$.

Deviation (%) = (Determined value – Prepared value) / Prepared value
$$\times$$
 100 (%) (3)

Flag E: 15% < | Deviation | < 30%

Flag X: 30% < | Deviation |

The evaluation of the results on both Samples No.161d and No.162d is described in 3.3.1 Evaluation of Laboratories' Performance (by sample). The comparison of the results for each analyte is described in 3.3.2 Comparison of Laboratories' Performance (by analyte). The evaluation of their analytical circumstance, such as analytical method, experience of personnel, and other analytical conditions is described in 3.3.3 Information on Laboratories.

Table 3.3 Summary of analytical results of the filter samples

Analysta	Analyte		Average	$\Delta V/V$ p*	S.D.	Number	Minimum	n Maximum	
Allalyte		(Vp)	(Va)	(%)	S.D.	(N)	IVIIIIIIIIIIIIII	ividamitam	
Sample No.	161d								
SO_4^{2-}	(µg)	15	13.1	-12.9	2.26	24	7.31	15.7	
Cl-	(µg)	4.0	3.73	-6.9	0.69	24	2.09	5.41	
$N{H_4}^+$	(µg)	8.8	8.72	-1.0	1.78	24	4.15	13.4	
Sample No.	<u>162d</u>								
SO_4^{2-}	(µg)	54	49.4	-8.6	4.4	24	39.9	55.6	
Cl-	(µg)	15	14.2	-5.5	0.97	23	11.8	16.6	
$N{H_4}^+$	(µg)	46	43.9	-4.5	7.64	24	21.8	59.0	

^{*} Prepared: Prepared values

3.3.1 Evaluation of Laboratories' Performance (by sample)

Samples No. 161d-1, No.161d-2

For Sample No.161d, 13 analytical data in 72 results were flagged E, and 10 analytical data were flagged X. The total percentage of the flagged samples was 31.9%. (Figure 3.1, Table 3.4 and 3.5).

Table 3.4 Number of flagged data for Sample No.151d

	SO_4^{2-}	Cl	$\mathrm{NH_4}^+$	Total
Flag E*	5	4	4	13
Flag X^*	4	3	3	10
Data within DQOs	15	17	17	49
Ratio of Flagged (%)	37.5	29.2	29.2	31.9

*Flag E: 15% < | D

15% < | Deviation $| \le 30\%$

*Flag X:

30% < | Deviation |

^{*} $\Delta V/Vp$: (Average result (V_a) - Prepared value (V_p) / Prepared value (V_p) × 100 (%)

Figure 3.1 Percentage of flagged data for Sample No.161d

Table 3.5 Average analytical results of Sample No.161d

	<u> </u>		
Lab. Code	$SO_4^{2-}(\mu g)$	Cl⁻ (μg)	$NH_4^+(\mu g)$
CN02	7.31 X	2.45 X	8.59
ID01	13.1	3.30 E	7.99
ID03	14.0	3.52	8.52
JP01	14.2	3.61	4.15 X
JP02	15.7	3.94	8.63
JP03	15.6	3.77	9.21
JP04	14.6	3.81	7.99
JP08	15.4	3.97	9.44
JP09	14.9	3.82	8.95
JP10	13.2	3.70	8.73
JP11	9.11 X	3.72	8.51
MY01	10.3 X	3.67	8.66
MM01	10.6 E	4.92 E	6.27 E
PH01	15.0	3.75	8.25
PH02	12.0 E	2.09 X	6.05 X
KR01	9.71 X	2.92 E	10.8 E
RU01	15.5	5.41 X	9.00
TH01	13.7	3.82	11.2 E
TH02	12.3 E	3.40	8.08

TH04	14.5	3.52	8.99
TH05	11.4 E	3.68	13.4 X
TH06	15.4	4.99 E	8.89
VN01	13.3	4.15	11.1 E
VN02	12.6 E	3.47	7.76

*Flag E: 15% < | Deviation $| \le 30\%$

*Flag X: 30% < | Deviation |

Samples No. 162d-1, No.162d-2

For Sample No.162d, 11 analytical data in 72 results were flagged E, and 2 analytical data were flagged X. The total percentage of the flagged samples was 18.1%. (Figure 3.2, Table 3.6 and 3.7).

Table 3.6 Number of flagged data for Sample No.162d

	SO_4^{2-}	Cl ⁻	$\mathrm{NH_4}^+$	Total
Flag E*	4	2	5	11
Flag X^*	0	1	1	2
Data within DQOs	20	21	18	59
Ratio of Flagged (%)	16.7	12.5	25.0	18.1

*Flag E: 15% < | Deviation $| \le 30\%$

*Flag X: 30% < | Deviation |

Figure 3.2 Percentage of flagged data for Sample No.162d

Average analytical results of Sample No.162d Table 3.7

Lab. Code	SO ₄ ²⁻ (μg)	Cl ⁻ (µg)	$NH_4^+(\mu g)$
CN02	40.8 E	11.8 E	42.6
ID01	50.8	12.2 E	34.0 E
ID03	51.9	13.8	35.0 E
JP01	48.2	14.4	21.8 X
JP02	54.1	14.8	43.4
JP03	53.9	14.6	48.7
JP04	53.1	14.6	42.2
JP08	55.6	14.9	47.3
JP09	52.0	14.4	44.6
JP10	50.0	14.3	45.4
JP11	40.9 E	14.8	44.7
MY01	47.9	15.1	45.5
MM01	44.3 E	13.8	41.0
PH01	54.4	14.0	45.4
PH02	39.9 E	8.72 X	41.6
KR01	46.1	13.4	43.5
RU01	54.2	16.6	43.7
TH01	47.8	14.9	58.9 E
TH02	47.8	13.5	40.6
TH04	54.1	15.0	39.6
TH05	49.4	13.3	57.7 E
TH06	50.4	13.9	44.8
VN01	47.4	14.1	59.0 E
VN02	49.7	13.9	42.8

*Flag E: 15% < | Deviation $| \le 30\%$

*Flag X:

30% < | Deviation |

Blank Sample (No.163d)

Each quantity of SO₄²⁻, Cl⁻, and NH₄⁺ was determined for blank sample No.163d-1 and No.163d-2. Their obtained values are shown in Table 3.8. Blank values were detected in a wide range, including 0 µg. Table 3.9 shows the ratio of the blank value to analytical results by laboratory. At some laboratories, results were not flagged even though some blank values were high.

Table 3.8 Analytical results of Sample No.163d (blank)

Lab. Code	SO ₄ ²⁻ (μg)	Cl ⁻ (μg)	$NH_4^+(\mu g)$
CN02	4.37	5.00	0.00
ID01	0.00	2.46	0.00
ID03	0.09	1.90	1.43
JP01	0.12	1.02	0.08
JP02	0.00	1.04	0.68
JP03	0.00	0.99	0.13
JP04	0.98	1.86	0.74
JP08	0.00	1.48	0.00
JP09	0.08	1.83	0.28
JP10	0.15	1.21	0.20
JP11	0.00	1.60	0.03
MY01	0.40	1.42	0.71
MM01	0.66	3.05	8.14
PH01	0.00	1.40	0.60
PH02	0.00	4.38	2.88
KR01	0.59	1.26	0.28
RU01	0.00	0.00	0.04
TH01	1.24	1.82	0.90
TH02	0.42	1.61	0.81
TH04	1.54	1.16	1.06
TH05	3.64	3.04	0.00
TH06	0.11	0.20	0.49
VN01	0.43	1.13	0.47
VN02	0.00	2.10	0.31
Average	0.62	1.79	0.84
Median	0.11	1.54	0.39
Minimum	0.00	0.00	0.00
Maximum	4.37	5.00	8.14
Standard deviation	1.11	1.12	1.64

Table 3.9	Ratio of blank value to analytical value (M sol,blank /M sol, sample) (%))					
	Sa	imple No.16	<u>1d</u>	<u>S</u>	ample No.162	<u>2d</u>
Lab. Code	SO_4^{2-}	Cl ⁻	$\mathrm{NH_4}^+$	SO_4^{2-}	Cl ⁻	$\mathrm{NH_4}^+$
CN02	37.3	67.1	0	9.7	29.6	0
ID01	0	42.7	0	0	16.7	0
ID03	0.7	35.1	14.3	0.2	12.1	3.9
JP01	0.8	28.3	1.9	0.2	7.1	0.4
JP02	0	20.9	7.3	0	6.6	1.5
JP03	0	20.8	1.4	0	6.3	0.3
JP04	6.3	32.8	8.5	1.8	11.3	1.7
JP08	0	27.2	0	0	9.0	0
JP09	0.5	32.4	3.0	0.2	11.2	0.6
JP10	1.1	24.6	2.2	0.3	7.8	0.4
JP11	0	30.0	0.4	0	9.8	0.1
MY01	3.7	27.9	7.6	0.8	8.6	1.5
MM01	5.9	38.3	56.6	1.5	18.1	16.6
PH01	0	27.2	6.8	0	9.1	1.3
PH02	0	67.7	32.3	0	33.4	6.5
KR01	5.8	30.2	2.5	1.3	8.6	0.6
RU01	0	0	0.5	0	0	0.1
TH01	8.3	32.3	7.4	2.5	10.9	1.5
TH02	3.3	32.0	9.2	0.9	10.6	2.0
TH04	9.6	24.8	10.5	2.8	7.2	2.6
TH05	24.1	45.2	0	6.9	18.7	0
TH06	0.7	3.8	5.2	0.2	1.4	1.1
VN01	3.2	21.4	4.1	0.9	7.4	0.8
VN02	0	37.7	3.8	0	13.1	0.7

: Data Flagged E : Data Flagged X

3.3.2 Comparison of Laboratories' Performance (by Analyte)

The overview of the results is shown in the following figures and tables for each analyte (SO_4^{2-} , Cl^- and NH_4^+). The obtained values from each laboratory were evaluated for their deviations. The number of the flagged data is shown in Table 3.4 and 3.6 for each analyte.

SO₄²⁻(Sulfate)

Figure 3.3 Deviation for SO₄²-

Deviation (%) = (Determined value - Prepared value) / Prepared value \times 100 (%)

Table 3.10.1 Analytical method of SO₄²⁻

24/24

Table 3.10.2 Flagged data of SO₄²⁻

Flagged Data	Flag E	Flag X	Flagged (%)
Sample No.161d	5	4	37.5
Sample No.162d	4	0	16.7

All laboratories used Ion Chromatography for the determination of SO₄²⁻. E flag appeared at 9 laboratories for Sample No.161d and No. 162d. X flag appeared at 4 laboratories for Sample No.161d and No. 162d.

Cl⁻(Chloride)

Figure 3.4 Deviation for Cl

Table 3.11.1 Analytical method of Cl

Analytical Method		
Ion Chromatography	24/24	

Table 3.11.2 Flagged data of Cl

Flagged Data	Flag E	Flag X	Flagged (%)
Sample No.161d	4	3	29.2
Sample No.162d	2	1	12.5

As with the analysis of Cl⁻, all laboratories used Ion Chromatography for the determination of Cl⁻. E flag appeared at 6 laboratories for Sample No.161d and No. 162d. X flag appeared at 4 laboratories for Sample No. 161d and No. 162d.

NH₄⁺(Ammonium)

Figure 3.5 Deviation for NH₄⁺

Table 3.12.1 Analytical method of NH₄⁺

Analytical Method	
Ion Chromatography	24/24

Table 3.12.2 Flagged data of NH₄⁺

Flagged Data	Flag E	Flag X	Flagged (%)
Sample No.161d	4	3	29.2
Sample No.162d	5	1	25.0

All laboratories used Ion Chromatography for the determination of NH₄⁺. E flag appeared at 9 laboratories for Sample No.161d and No.162d. X flag appeared at 4 laboratories.

3.3.3 Information on Laboratories

Methodologies used

As shown in Table 3.13, all laboratories used Ion Chromatography which is recommended by EANET.

Table 3.13 Analytical methods used for sample analysis

Table 3.1	13 Analytical methods used for	or sample analysis
Lab. Code	SO ₄ ²⁻ ,Cl ⁻	NH ₄ ⁺
CN02	Ion Chror	natography
ID01	Ion Chror	natography
ID03	Ion Chror	natography
JP01	Ion Chror	natography
JP02	Ion Chror	natography
JP03	Ion Chror	natography
JP04	Ion Chror	natography
JP05	Ion Chror	natography
JP08	Ion Chror	natography
JP09	Ion Chror	natography
JP10	Ion Chror	natography
MY01	Ion Chror	natography
MM01	Ion Chror	natography
PH01	Ion Chror	natography
PH02	Ion Chror	natography
KR01	Ion Chror	natography
RU01	Ion Chror	natography
TH01	Ion Chror	natography
TH02	Ion Chror	natography
TH04	Ion Chror	natography
TH05	Ion Chror	natography
TH06	Ion Chror	natography
VN01	Ion Chror	natography
VN02	Ion Chror	natography

Years of staff experience

Years of staff experience are summarized in Table 3.14. A light gray color cell indicates that there is a flag for Sample No.161d or 162d. A dark gray color cell indicates the flagged data in both Sample No.161d and No.162d.

Table 3.14 Years of staff experience (unit: year)

Lab. Code	SO ₄ ²⁻	Cl ⁻	NH ₄ ⁺
CN02	8	8	8
ID01	14	14	14
ID03	6	6	6
JP01	13	13	13
JP02	12	12	12
JP03	3	3	3
JP04	2	2	2
JP08	3	3	3
JP09	1	1	1
JP10	5	5	5
JP11	1	1	1
MY01	3	3	10
MM01	5	5	5
PH01	11	11	11
PH02	2	2	2
KR01	15	15	15
RU01	18	18	18
TH01	6	6	6
TH02	13	13	13
TH04	2	2	2
TH05	16	16	16
TH06	11	11	11
VN01	23	23	23
VN02	3	3	3

: One sample is flagged.
: Two samples are flagged.

Flagged Data

In the results of Sample No.161d and 162d, the total number of the flagged data was 36 (E: 24, X: 12) in the whole values (144). The number of the flagged data in each laboratory is shown in Figure 3.6. Eight laboratories met DQOs (33.3%).

Figure 3.6 Number of flagged data and laboratories

Calibration standard solution

Table 3.15 shows the lowest and highest concentrations of their calibration standard solutions (SO₄²⁻, Cl⁻, NH₄⁺) used in each laboratory, and also shows their concentrations of the prepared values in µmol L⁻¹. The concentrations of the standard solutions in some laboratories were not in the appropriate range. A gray highlighted value in Table 3.15 indicates that the concentration value of standard solution is lower than that of the prepared value. In contrast, some laboratories used extremely high concentration standards comparing with samples concentrations.

Each concentration of the prepared values was expected within the range of both concentrations of lowest and highest standard solutions. However, some laboratories used inappropriate solution ranges. If the concentrations of their obtained values were not in the range of the calibration standard, laboratories should have analyzed again with the appropriate concentration range of standard solution.

Table 3.15 Ranges of the calibration standard solution in each laboratory

Lab Code.	SO ₄ ²⁻ (μm	SO ₄ ²⁻ (μmol L ⁻¹)		Cl ⁻ (µmol L ⁻¹)		NH_4^+ (µmol L^{-1})	
	Lowest	Highest	Lowest	Highest	Lowest	Highest	
CN02	0	81.6	0	225	0	111	
ID01	0	52.1	0	84.5	0	66.7	
ID03	0	104	0	113	0	111	
JP01	0	208	0	564	0	554	

JP02	0	52.1	0	141	0	277	
JP03	0	52.1	0	28.2	0	166	
JP04	0	52.1	0	141	0	277	
JP08	0	104	0	283	0	277	
JP09	0.3	104	0.9	28.2	1.7	166	
JP10	0	52.1	0	28.2	0	277	
JP11	0	260	0	280	0	55.0	
MY01	0.1	64.1	0	85.4	0	139	
MM01	0.1	104	1.2	26.4	0.3	168	
PH01	0	52.1	0	56.3	0	277	
PH02	0	104	0	290	1.6	557	
KR01	0.9	104	2.6	282	7.6	282	
RU01	0	46.8	0	25.4	0	333	
TH01	0	104	0	283	0	557	
TH02	0.2	41.7	0.5	113	1.1	111	
TH04	0	19.4	0	55.4	0	54.9	
TH05	0	62.5	0	56.4	0	222	
TH06	0	93.7	0	254	0	188	
VN01	0	104	0	141	0	277	
VN02	0	83.3	0	35.2	0	140	
*Sample No. 161d	7.81		5	5.64		24.4	
*Sample No. 162d	28.	28.1 21.2			127		
The second value was at 6th addition was							

The measured value was out of the calibration range.

Lowest and Highest: lowest/highest concentrations in the calibration standard solutions.

MW: molecular weight

^{*}Sample concentration (μ mol L⁻¹) = Prepared value (μ g) / Solvent (μ L) / MW

3.4 Comparison with past surveys

This Inter-laboratory Comparison on dry deposition has been implemented since 2005. The results showing the percentages of flagged data and percentages of data that were satisfied the DQOs were shown in Figure 3.7.

Figure 3.7 Comparison of DQOs' results for the past years

The comparison for each analyte in Inter-laboratory Comparison on dry deposition year—by-year is shown in Figure 3.8.

Figure 3.8 Comparison for each parameter in inter-laboratory comparison project

References

EANET (2010). *Technical Manual for Wet Deposition Monitoring in East Asia-2010*. Asia Center for Air Pollution Research, Niigata, Japan, 113p.

EANET(2013). *Technical Manual for Air Concentration Monitoring in East Asia*. Asia Center for Air Pollution Research, Niigata, Japan, 155p.

4. 18th INTER-LABORATORY COMPARISON PROJECT ON SOIL

4.1 Introduction

The Inter-laboratory Comparison Project on Soil started in 1999 as one of the activities within the QA/QC program on Soil and Vegetation Monitoring. The inter-laboratory precision will be clarified as well as the within-laboratory and repeatability precision in the project to improve the analytical quality of the EANET laboratories. Possible factors affecting precisions have been discussed through the previous projects.

Soil analysis has complicated procedures and steps in comparison with environment water. Steps in the procedures of soil analysis may be related to the variation among laboratories; e.g. extraction, instrumental analysis and/or titration. Results of the first three projects from 1999 to 2001 suggested that instrumental analysis have relatively large effect on the total precision of soil analysis, and the following analytical conditions could affect results:

- Addition of La or Sr solution for AAS analysis of Ex-Ca
- Preparation method of standard solution
- ➤ Instrument for Ex-K and Na analysis

The participating laboratories shared the information on these possible factors to improve the precision.

In the 18th project, the Network Center (NC) provided two soil samples (No.161s and No.162s) to laboratories to improve the inter-laboratory precision further more by standardization of methods. In this report, the data from participating laboratories were evaluated statistically according to the QA/QC program for soil monitoring. The results contribute to the assessment of the inter-laboratory variation in soil monitoring and provide useful information to improve precision of soil analysis on EANET.

4.2 Procedures

4.2.1 Participating Laboratories

Fifteen laboratories of 7 countries participated in the 18th project. The results submitted to the network center were analyzed statistically according to the QA/QC program. Names of the participating laboratories are listed in Table 1.1.

4.2.2 Description of Samples

The characteristics of the soil samples were as follows:

Sample No.161s: Cambisols Sample No.162s: Cambisols

Soils for Sample No.161s and No.162s were collected in *Cryptomeria japonica* plantation in Toyama Prefecture, Japan. Both soils were collected from B-horizon composed chiefly of soil minerals. The soils were air-dried, sieved to separate the fine earth fraction (< 2 mm) and mixed well by the following procedures; 1) the bulk sample was divided into two parts, 2) each part was mixed well, 3) the parts were joined and mixed well and 4) the sample was divided again. This procedure was repeated 15 times to ensure a completely homogeneous bulk sample. Finally, portions of 400 - 500 g were weighed out, packed in 500 ml plastic bottles, and then, sterilized using radioisotope (20 kGy) for distributing (exporting) to the participating countries.

4.2.3 Parameters Analyzed

All the participating laboratories were expected to measure the parameters shown in Table 4.1.

Table 4.1 Parameters to be measured

Parameters	Unit	No.161s and 162s
a) Moisture Content	wt %	M
b) pH (H ₂ O)		M
c) pH (KCl)		M
d) Exchangeable Ca ²⁺	cmol _c kg ⁻¹	M
e) Exchangeable Mg ²⁺	cmol _c kg ⁻¹	M
f) Exchangeable K ⁺	cmol _c kg ⁻¹	M
g) Exchangeable Na ⁺	cmol _c kg ⁻¹	M
h) Exchangeable acidity	cmol _c kg ⁻¹	M
i) Exchangeable Al ³⁺	cmol _c kg ⁻¹	M
j) Exchangeable H ⁺	cmol _c kg ⁻¹	M

M: Mandatory items

[&]quot;Exchangeable" were abbreviated to "Ex-" in this report; e.g. Ex-Ca, Ex-Mg, etc.

4.2.4 Analytical Methodologies

All the procedures for chemical analysis were carried out basically according to *Technical Manual for Soil and Vegetation Monitoring in East Asia* (EANET, 2000). In the respective laboratories, all the parameters were analyzed three times under the same conditions (as analyst, time, and instrument). Then, under within-laboratory-reproducibility condition (i.e. different analyst, time, and instrument), all the analytical procedures should be repeated twice.

4.2.4.1 Standardization of methods

All the procedures for chemical analysis should be carried out basically according to *Technical Documents for Soil and Vegetation Monitoring in East Asia* (March 2000, Adopted at: The Second Interim Scientific Advisory Group Meeting of Acid Deposition Monitoring Network in East Asia). Additionally, the following analytical procedures were standardized;

- (1) <u>Atomic absorption spectrometry (AAS)</u> method should be used basically for analysis of Ex-Ca, Mg, K and Na. (If it is impossible to use AAS, Flame (emission) photometry method is allowable for Ex-K and Na).
- (2) <u>Titration method</u> should be used for analysis of Ex-acidity, Al and H.
- (3) <u>Calibration curve method</u> should be used for determination of Ex-Ca, Mg, K and Na.
- (4) The Samples should be extracted and diluted with <u>1M CH₃COONH₄ (pH 7.0)</u> for analysis of Ex-Ca, Mg, K and Na. Then, 1M CH₃COONH₄ (pH 7.0) solution should be used to prepare each standard solution as the solvent.
- (5) <u>Sr</u> should be added to the samples and each standard solution to eliminate the interference of the sample for analysis of Ex-Ca and Mg. These are to be the same concentration Sr. (If Sr is not available, La is allowable.)

4.2.4.2 Procedures for Ex-base cations

- (1) Extract from air-dry sample with 1M CH₃COONH₄ (pH 7.0) solution.
- (2) Pipette an appropriate aliquot of the soil extract into volumetric flask and add 100g-Sr/L solution to be 1000mg-Sr/L as final concentration Sr. (SrCl₂ solution eliminates the interference of the sample.) And then make to volume with 1M CH₃COONH₄ (pH 7.0). This solution is named "Prepared sample".
- (3) Prepare three "prepared samples".
- (4) Prepare each standard solution with diluting 1M CH₃COONH₄ (pH 7.0) solution.
- (5) Add 100g-Sr/L solution to each standard solution to be the same concentration SrCl₂ as the sample.
- (6) Analyze the standard solution and the prepared samples by AAS.
- (7) Store the calibration curves certainly and report them together with reporting formats.

(8) Repeat the procedure 1) - 7) twice.

(9) Calculation of content in the soil

Content in the soil could be calculated by the following formulas:

Ex-Ca (cmol_c kg⁻¹ soil) = [A * B * V * mcf]/[10 * 20.04 * S]

Ex-Mg (cmol_c kg⁻¹ soil) = [A * B * V * mcf]/[10 * 12.15 * S]

Ex-K (cmol_c kg⁻¹ soil) = [A * B * V * mcf]/[10 * 39.10 * S]

Ex-Na (cmol_c kg⁻¹ soil) = [A * B * V * mcf]/[10 * 23.00 * S]

Where

A = Measurement values of prepared (diluted) samples (mg/L)

B = Dilution ratio (B = 2, if 25mL sample was diluted to 50 mL for making prepared sample.)

mcf = Moisture correction factor (Measured value)

S =Weight of air-dry sample (g)

V = Volume of extract (mL)

4.2.4.3 Procedures for Ex-acidity

- (1) Extraction and titration would be carried out according to *Technical Documents for Soil and Vegetation Monitoring in East Asia* basically.
- (2) Prepare three samples. Analyze each sample and at least one blank.
- (3) Repeat the procedure twice
- (4) Calculation of content in the soil

Content in the soil could be calculated by the following formulas:

Ex-acidity (cmol_c kg⁻¹ soil) = $[(A_{\text{NaOH}} - bl_{\text{NaOH}}) * M_{\text{NaOH}} * c * 100 * mcf] / S$

Ex-Al (cmol_c kg⁻¹ soil) = $[(A_{HCl} - bl_{HCl}) * M_{HCl} * c * 100 * mcf] / S$

Ex-H (cmol_c kg⁻¹ soil) = $[(A_{NaOH} - bl_{NaOH}) * M_{NaOH} - (A_{HCl} - bl_{HCl}) * M_{HCl}] * c * 100 * mcf] / S$

Where

 A_{NaOH} = Titration volume of 0.025 M NaOH solution needed for percolate (mL)

 $A_{\rm HCl}$ = Titration volume of 0.02 M HCl solution needed for percolate (mL)

 bl_{NaOH} = Titration volume of 0.025M NaOH solution needed for blank (mL)

 bl_{HCl} = Titration volume of 0.02M HCl solution needed for blank (mL)

 $M_{\text{NaOH}} = \text{Molarity of NaOH solution (mol/L)}$

 $M_{HCl} = Molarity of HCl solution (mol/L)$

S = Weight of air-dry sample (g)

c = Aliquot factor (c = 2, if 50mL percolate of 100mL is used.)

4.2.4.4 Reporting

(1) Preparation of the report

Digital formats (Microsoft Excel) were provided to the participating laboratories. Chemical

properties of soil sample were calculated automatically by the formula written in the formats.

(2) Submission of the report

Entered data in digital formats and other information (e.g. calibration curve) were submitted by E-mail.

4.2.4.5 Data Checking Procedures

We statistically evaluated the data according to the following procedures described in the "Technical Manual for Soil and Vegetation Monitoring in East Asia" (2nd ISAG, 2000). Dataset with one decimal place for pH and two decimal places for Ex-cations concentrations and Ex-acidity were used for the statistical analysis.

1) General description of the data variability

Mean, median, variance and coefficient variation (CV) were calculated for entire dataset in inter-laboratory project. Box-and-whisker plots were also used for checking the data variability and detecting outliers in the dataset, visually.

2) Detection of outliers to prepare the verified dataset

Evenness of within-laboratory precision (variation in each laboratory) and inter-laboratory precision (variation between 15 laboratories) were verified by Cochran and Grubbs methods, respectively. We also computed "verified" mean, median and other statistical summary from verified datasets. In inter-laboratory comparison project on soil, "verified" mean will be a good reference to assess the analyzed value of each laboratory.

3) Analysis of variance

Total variation among laboratories includes within-laboratory and inter-laboratory variations. As described in the following equation, Total sum of square (S_T) is consisted of Sum of square inter-laboratories (S_R) , Sum of square within-laboratory (S_{RW}) and Sum of square repeatability (S_r) .

$$S_{\rm T} = S_{\rm R} + S_{\rm RW} + S_{\rm r}$$

Based on the above equation, inter-laboratories variance, within-laboratory-reproducibility variance, and repeatability variance were calculated, and then the precision was estimated.

4) Calculation of permissible tolerance

Permissible tolerances were calculated based on the above precision; 1) repeatability limit, 2) within-laboratory reproducibility limit and 3) inter-laboratory reproducibility limit. Permissible tolerances are meaningful to determine "5% significant difference" in actual monitoring data. For instance, significantly temporal changes in the same site or significant difference between two laboratories would be indicated if those changes or the difference were more than "within-laboratory reproducibility limit" or "inter-laboratory reproducibility limit".

4.3 Results

4.3.1 General description of the data variability

The statistical summary is shown in Table 4.2. On the 18th inter-laboratory project, pH(H₂O), pH(KCl), Ex-base cations, and Ex-acidity were largely different between both samples. pH(H₂O) and Ex-base cations were higher in No.162s than in No.161s, whereas Ex-acidity, Ex-Al³⁺ and EX-H⁺ were higher in No.161s than in No.162s. We observed the large variations in the analyzed data (CVs) of Ex-base cations, acidity and acid cations in both samples (> 15%). Meanwhile, in both samples, CVs were relatively small for both pH(H₂O) and pH(KCl) (< 7%).

Table 4.2 Statistical summary

	II/II O	H/H/CD -	Ex-Ca	Ex-Mg	Ex-K	Ex-Na	Ex-acidity	Ex-Al	Ex-H
Statistics	$pH(H_2O)$	pH(KCl)				cmol _c kg	-1		
	No. 161s								
Number of Laboratories	15	15	12	12	12	12	15	15	15
Total average	4.4	3.8	0.35	0.24	0.15	0.07	15.90	14.87	1.09
Median	4.4	3.8	0.35	0.21	0.14	0.06	15.57	14.73	1.02
Maximum	4.7	4.2	0.60	0.35	0.37	0.14	19.64	17.99	2.06
Minimum	3.6	3.6	0.01	0.19	0.04	0.03	13.38	12.28	0.13
Standard deviation	0.3	0.1	0.17	0.06	0.08	0.03	1.66	1.58	0.56
CV (%)*1	6.8	2.6	48.6	25.0	53.3	42.9	10.4	10.6	51.4
	No. 162s								
Number of Laboratories	15	15	12	12	12	12	15	15	15
Total average	4.9	4.1	2.20	0.40	0.17	0.05	2.38	1.88	0.49
Median	4.9	4.1	2.52	0.40	0.16	0.04	2.25	1.85	0.44
Maximum	5.3	4.5	2.85	0.54	0.39	0.18	3.56	3.07	1.24
Minimum	4.6	3.9	0.49	0.31	0.05	0.02	1.77	1.39	0.13
Standard deviation	0.2	0.1	0.83	0.07	0.08	0.04	0.48	0.40	0.30
CV (%)*1	4.1	2.4	37.7	17.5	47.1	80.0	20.2	21.3	61.2

^{*1:} CV, Coefficient of variance (%) = (standard deviation/total average) *100.

We also have an overview of the data by box-and-whisker plot (Figure 4.1) of No.161s and 162s analyzed by 15 laboratories. Box-and-whisker plot provides the six-number summaries; total average shown by an open argyle, lower quartile, median and upper quartile shown by a box and a bold line, and lowest and highest value within the range between the lower quartile minus 1.5 times the inter-quartile range and the upper quartile plus 1.5 times the inter-quartile range drawn by error bar. In addition, the values outside the error bar are shown as outliers, that is, non-parametrical outliers.

The plots showed several "non-parametrical" outliers in each property. Those outliers might be due to wrong calculation, procedure, irregular contamination, and so on because the values were 5-20 times higher or lower than average. Therefore, in following section, we removed these outliers by parametrically statistical method to calculate the good reference more close to true value.

Figure 4.1 Data variability of No.161s and No.162s

Table 4.3 Data verification by Cochran-Grubbs methods

Country	Lab.	Repeat	$pH(H_2O)$	pH(KCl)	Ex-Ca	Ex-Mg	Ex-K	Ex-Na	Ex-acidity	Ex-Al	Ex-H
		analysis						cmol _c kg ⁻¹			
China	CN01	1st	4.4	3.8	0.32	0.20	0.12	0.03	14.95	14.75	0.20
		2nd	4.4	3.8	0.32	0.20	0.12	0.03	14.92	14.71	0.21
	CN02	1st	4.4	3.9	0.51	0.24	0.15	0.07	15.66	13.76	2.17
		2nd	4.4	3.8	0.50	0.24	0.15	0.07	15.48	13.80	1.95
	CN03	1st	4.5	3.9	0.51	0.21	0.15	0.09	13.53	12.51	1.02
	CNIO4	2nd	4.5	3.9	0.52	0.21	0.15	0.09	13.84	12.82	1.02
	CN04	1st 2nd	4.4	3.7 3.7	0.34 0.35	0.20 0.20	0.15 c 0.14 c	0.06 0.06	15.43 15.11	13.71 13.55	1.73
ndonesia	ID01	1st	4.5	3.7	0.36	0.33	0.14 0	0.08	15.29	14.60	0.69
паонези	iboi	2nd	4.5	3.7	0.35	0.31	0.14	0.07	15.77	14.92	0.84
	ID04	1st	4.4 c	3.9	0.61	0.35	0.37 g	0.14 g		12.38	1.09
		2nd	3.9 c	3.9	0.60	0.34	0.37 g	0.14 g		12.17	1.1
Japan	JP04	1st	4.6	3.8	0.30	0.18	0.14	0.05	16.41	15.78 c	0.63
		2nd	4.7	3.8	0.33	0.20	0.15	0.05	17.11	16.53 с	0.58
	JP10	1st	4.5	3.8	0.39	0.24	0.14 c	0.06	16.23	14.44	1.79
		2nd	4.5	3.8	0.43	0.23	0.15 c	0.06	16.49	14.49	2.00
Mongolia	MN01	1st	4.1 g	4.2 g	NA	NA	NA	NA	18.82	17.47	1.34
		2nd	4.1 g	4.2 g	NA	NA	NA	NA	18.82	17.47	1.3
Russia	RU01	1st	4.3	3.8	0.41	0.21	0.14	0.05	15.64	15.52	0.14
		2nd	4.3	3.8	0.39	0.20	0.14	0.05	15.76	15.64	0.1
Thailand	TH01	1st	4.5	3.8	0.34	0.21	0.13	0.06	15.43	14.97	1.5
(7:-4	V/N/O1	2nd	4.5	3.9	0.34	0.22	0.14	0.06	15.99	15.44	1.3
Vietnam	VN01	1st 2nd	4.3	3.8 3.8	0.01 0.01	0.19 0.19	0.15	0.07 0.07	14.83 14.90	14.01	0.82
	VN02	1st	4.4	3.6	NA	NA	0.15 NA	NA	16.83	14.07 15.70	0.8
	V1402	2nd	4.5	3.6	NA	NA	NA	NA	16.83	15.70	0.9
	VN04	1st	3.6 g	3.6 c	0.08	0.32	0.04 g	0.08	15.44	14.56	0.8
	V1104	2nd	3.6 g	4.0 c	0.08	0.32	0.04 g	0.08	15.44	14.56	0.9
		2110	5.0 g								1.5
	VN05	3rd	4.5	3.7	NA	NA	NA	NA	19.64	17.99	1.30
	VN05	3rd 4th	4.5 4.5	3.7 3.7	NA NA	NA NA	NA NA	NA NA	19.64 19.64	17.99	1.50
Jo 162s	VN05										
To. 162s		4th	4.5	3.7	NA	NA	NA	NA	19.64	17.99	1.50
To. 162s Country	VN05	4th Repeat						NA Ex-Na			
Country	Lab.	4th Repeat analysis	4.5 pH(H ₂ O)	pH(KCl)	NA Ex-Ca	NA Ex-Mg	NA Ex-K	NA Ex-Na cmol _c kg ⁻¹	19.64 Ex-acidity	17.99 Ex-Al	1.50 Ex-H
		4th Repeat analysis 1st	4.5 pH(H ₂ O)	3.7 pH(KCl)	NA Ex-Ca 2.54	NA Ex-Mg 0.36	NA Ex-K 0.13	Ex-Na cmol _c kg ⁻¹ 0.02	19.64 Ex-acidity	17.99 Ex-Al	1.50 Ex-H
Country	Lab.	4th Repeat analysis	4.5 pH(H ₂ O)	pH(KCl)	NA Ex-Ca 2.54 2.55	NA Ex-Mg	NA Ex-K 0.13 0.13	NA Ex-Na cmol _c kg ⁻¹	19.64 Ex-acidity	17.99 Ex-Al	0.13 0.13
Country	Lab.	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8	3.7 pH(KCl)	NA Ex-Ca 2.54 2.55 2.83	NA Ex-Mg 0.36 0.36	NA Ex-K 0.13	Ex-Na cmol _c kg ⁻¹ 0.02 0.02	19.64 Ex-acidity 1.98 1.97 2.36	17.99 Ex-Al 1.85 1.84	0.13 0.13 0.88
Country	Lab.	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9	3.7 pH(KCl)	NA Ex-Ca 2.54 2.55	NA Ex-Mg 0.36 0.36 0.40	NA Ex-K 0.13 0.13 0.16	Ex-Na cmol _c kg ⁻¹ 0.02 0.02 0.04	19.64 Ex-acidity 1.98 1.97	17.99 Ex-Al 1.85 1.84 1.52	1.50 Ex-H 0.13 0.13 0.88 0.91
Country	Lab. CN01 CN02	Repeat analysis 1st 2nd 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9	3.7 pH(KCl)	NA Ex-Ca 2.54 2.55 2.83 2.87	NA Ex-Mg 0.36 0.36 0.40 0.39	NA Ex-K 0.13 0.13 0.16 0.16	Ex-Na cmol _c kg ⁻¹ 0.02 0.02 0.04 0.04	19.64 Ex-acidity 1.98 1.97 2.36 2.50	17.99 Ex-Al 1.85 1.84 1.52 1.62	1.5 Ex-H 0.13 0.13 0.88 0.91 0.68
Country	Lab. CN01 CN02	Repeat analysis 1st 2nd 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0	9H(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31	Ex-K 0.13 0.13 0.16 0.16 0.18	Ex-Na cmol, kg ⁻¹ 0.02 0.02 0.04 0.04	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96	1.5 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67
Country	Lab. CN01 CN02 CN03 CN04	Repeat analysis 1st 2nd 1st 2nd 1st 2nd 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.34	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16	Ex-Na cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51	1.50 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62
Country	Lab. CN01 CN02 CN03	Repeat analysis 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.34 0.45	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15	Ex-Na cmol, kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.05	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91	1.50 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64
Country	CN01 CN02 CN03 CN04	Repeat analysis 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.15 0.15	Ex-Na cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97	1.50 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32
Country	Lab. CN01 CN02 CN03 CN04	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.54	Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.39 g	Ex-Na cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.17 g	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97	1.5 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.54 0.53	Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.15 0.15 0.39 g 0.39 g	Ex-Na Cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.17 g 0.18 g	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29	1.5 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.33 0.42
Country	CN01 CN02 CN03 CN04	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9 4.9 5.0 5.0	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.54 0.53 0.30	Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.15 0.15 0.39 g 0.39 g 0.17	Ex-Na Cmol _k kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.04 0.17 g 0.18 g 0.03 cmol _k kg ⁻¹ 0.03 cmol _k kg ⁻¹ cmol _k kg ⁻¹	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69	1.50 Ex-H 0.13 0.18 0.68 0.67 0.62 0.64 0.41 0.32 0.33 0.42
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01 ID04	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.34 0.34 0.45 0.45 0.54 0.53 0.30 0.33	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.19 0.39 0.39 0.39 0.17 0.16	Ex-Na Cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.04 0.17 g 0.18 g 0.03 0.03 0.03	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.51 1.91 1.97 1.50 1.29 1.69 1.70	1.56 Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.33 0.42 0.48
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 6.9 4.9 6.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.34 0.34 0.45 0.45 0.54 0.53 0.30 0.33 0.41	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.19 0.17 0.16 0.15 0.19 0.17 0.16 0.15 0.19 0.19	Ex-Na Cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.05 0.018 g 0.03	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06	1.5 Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.33 0.42 0.48
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 c 4.9 c 5.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.54 0.53 0.30 0.33 0.41 0.44	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	Ex-Na Cmol _k kg ⁻¹ 0.02 0.04 0.04 0.04 0.05 0.05 0.17 g	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05	1.56 Ex-H 0.13 0.18 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.43 0.45 0.45
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01 ID04	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.9 4.7 c 4.9 c 5.0 5.0 4.9 c 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.34 0.34 0.45 0.45 0.54 0.53 0.30 0.33 0.41	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.19 0.17 0.16 0.15 0.19 0.17 0.16 0.15 0.19 0.19	Ex-Na Cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.05 0.018 g 0.03	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06	1.56 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.43 0.45 0.45
Country China Indonesia	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 c 4.9 5.0 5.0 4.9 4.7 c 5.0 5.0 5.0 4.9 4.7 6.0 5.0 5.0 6.0 6.0	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.54 0.53 0.30 0.33 0.41 0.44 NA	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.19 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA	Ex-Na Cmol _k kg ⁻¹ 0.02 0.04 0.04 0.04 0.05 0.04 0.17 g 0.18 g 0.03 0.03 0.04 NA Cmol _k kg ⁻¹ 0.05 0.04 0.05 0.06 0.07 0.08 g 0.00	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06	1.56 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.43 0.45 0.45 0.45
Country China Indonesia Japan Mongolia	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10 MN01	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 c 4.9 c 5.0 4.9 4.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.34 0.34 0.45 0.45 0.54 0.53 0.30 0.33 0.41 0.44 NA NA	NA Ex-K 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.19 0.39 0.39 0.17 0.16 0.15 c 0.16 c NA NA	Ex-Na cmol _k kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.017 0.18 g 0.03 0.03 0.03 0.04 NA NA	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 2.06	1.56 Ex-H 0.13 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.43 0.45 0.45 0.45
Country China Indonesia Japan Mongolia	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10 MN01	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 c 4.9 c 5.0 5.0 4.9 4.7 c 4.7 c	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.34 0.34 0.45 0.45 0.54 0.53 0.30 0.33 0.41 0.44 NA NA NA 0.41 c	NA Ex-K 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.39 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15	Ex-Na cmol _e kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.017 0.17 0.03 0.03 0.03 0.04 NA NA 0.03	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 1.62	1.5s Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.41 0.32 0.43 0.45 0.45 0.43 1.24 0.56 0.61
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP10 MN01 RU01 TH01	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 c 0.37 c 0.37 0.37	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.16 0.15 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15 0.14 0.15 0.15	Ex-Na	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 1.62 1.62	1.5s Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.41 0.32 0.43 0.45 0.45 0.43 1.24 0.56 0.61
China China Indonesia Japan Mongolia Russia	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10 MN01 RU01	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 c 0.37 c	NA Ex-K 0.13 0.16 0.16 0.18 0.18 0.15 0.15 0.16 0.15 0.15 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15 0.15	Ex-Na cmol _c kg ⁻¹ 0.02 0.04 0.04 0.04 0.04 0.05 0.08 0.17 g 0.18 g 0.03 0.03 0.03 0.04 NA NA 0.03 0.03 0.03	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 1.62 1.62 1.67	1.56 Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.48 0.45 0.45 0.43 1.24 1.24 1.24 1.24 1.25 0.56 0.61 0.71 0.56
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10 MN01 RU01 TH01	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 5.0 5.0 4.9 4.7 4.7	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 0.37 0.37 0.37 0.41 0.41	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.16 0.15 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15 0.14 0.15 0.15	Ex-Na	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.06 2.06 1.62 1.62 1.67 1.60 1.80 1.78 1.76	1.5s Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.44 0.45 0.43 1.24 1.24 0.56 0.61 0.71 0.56
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP10 MN01 RU01 TH01	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 5.0 5.0 4.9 4.7 4.7 4.7 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34 0.51 0.51 NA	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 0.37 0.37 0.37 0.41 0.41 NA	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.16 0.15 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15 0.15 0.15 0.17 0.17 NA	Ex-Na Cmol _e kg ⁻¹ 0.02 0.04 0.04 0.04 0.05 0.03 0.03 0.04 NA NA 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 NA NA 0.03 0.03 0.04 0.04 NA NA 0.05 0.04 0.04 NA NA 0.05	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20 2.00 2.01 2.53	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.06 2.06 1.62 1.62 1.67 1.60 1.80 1.78 1.76 2.22	1.56 Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.45 0.45 0.45 0.61 0.71 0.56 0.23 0.25 0.21
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP10 MN01 RU01 TH01 VN02	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 5.0 5.0 4.9 4.7 4.7 4.7 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34 0.51 0.51 NA NA	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 c 0.37 c 0.37 0.37 0.41 0.41 NA NA NA	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.19 0.19 0.19 0.10 0.10 0.11 0.11 0.11	Ex-Na	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20 2.00 2.01 2.53 2.53	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 1.62 1.62 1.67 1.60 1.80 1.78 1.76 2.22 2.22	1.50 Ex-H 0.13 0.18 0.68 0.67 0.62 0.64 0.41 0.32 0.43 0.45 0.45 0.45 0.61 0.71 0.56 0.23 0.25 0.21
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP04 JP10 MN01 RU01 TH01	Repeat analysis 1st 2nd 1st	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 5.0 5.0 4.9 4.7 4.7 5.0 4.9 4.7 4.7 4.7 4.9 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34 0.51 0.51 NA NA 2.72	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 c 0.37 c 0.37 0.37 0.41 NA	NA Ex-K 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.15 0.16 0.15 0.39 g 0.39 g 0.17 0.16 0.15 c 0.16 c NA NA 0.15 0.14 0.15 0.14 0.15 0.17 0.17 NA NA 0.05 g	Ex-Na	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20 2.00 2.01 2.53 2.53 2.07	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 2.06 1.62 1.62 1.67 1.60 1.80 1.78 1.76 2.22 2.22 1.89	1.50 Ex-H 0.13 0.18 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.32 0.33 0.42 0.45 0.45 0.45 0.61 0.71 0.566 0.23 0.25 0.21 0.16
Country China Indonesia Japan Mongolia Russia Thailand	Lab. CN01 CN02 CN03 CN04 ID01 ID04 JP10 MN01 RU01 TH01 VN02	Repeat analysis 1st 2nd	4.5 pH(H ₂ O) 4.8 4.8 4.9 4.9 5.0 5.0 4.9 4.9 4.7 5.0 5.0 4.9 4.7 4.7 4.7 4.9 4.9	3.7 pH(KCl)	Ex-Ca 2.54 2.55 2.83 2.87 2.51 2.49 2.57 2.50 2.30 2.26 2.85 2.84 1.94 2.05 2.76 2.79 NA NA 0.50 0.49 2.32 2.34 0.51 0.51 NA NA	NA Ex-Mg 0.36 0.36 0.40 0.39 0.31 0.31 0.34 0.45 0.53 0.30 0.33 0.41 0.44 NA NA 0.41 c 0.37 c 0.37 0.37 0.41 0.41 NA NA NA	NA Ex-K 0.13 0.13 0.16 0.16 0.18 0.18 0.15 0.16 0.15 0.19 0.19 0.19 0.10 0.10 0.11 0.11 0.11	Ex-Na	19.64 Ex-acidity 1.98 1.97 2.36 2.50 2.63 c 2.43 c 2.14 2.14 2.32 2.29 1.83 1.71 2.17 2.16 2.51 2.47 3.30 g 3.30 g 2.22 2.27 2.12 2.20 2.00 2.01 2.53 2.53	17.99 Ex-Al 1.85 1.84 1.52 1.62 1.96 1.76 1.52 1.51 1.91 1.97 1.50 1.29 1.69 1.70 2.06 2.05 2.06 1.62 1.62 1.67 1.60 1.80 1.78 1.76 2.22 2.22	1.50 Ex-H 0.13 0.88 0.91 0.68 0.67 0.62 0.64 0.41 0.33 0.42 0.48 0.45 0.43 1.24 0.56 0.61 0.71 0.56 0.23 0.25 0.21

The outliers were determined by Cochran and Grubbs tests, and were indicated by "c" and "g" signs, respectively.

4.3.2 Detection of outliers

Detection of outliers by Cochran-Grubbs methods is shown in Table 4.3. The laboratory which has a large difference in repeat analyses was judged as outlier by Cochran method (examination of the evenness of within-laboratory precision); e.g. "IN04" in $pH(H_2O)$, "CN04" in Ex-K of No.161s. Then, the rest of data were tested by Grubbs method (examination of the average value of each laboratory). In this method, the laboratory which has remarkably large or small average was judged as outliers. Cochran-Grubbs method detected the several outliers for each parameter. As a result of removing outliers, the "verified" dataset consisting of 12-13 laboratories in $pH(H_2O)$ and pH(KC1), 7-12 laboratories in Ex-base cations and 12-15 laboratories in Ex-acidity, Al and H were used for further analysis in the following section.

4.3.3 Statistical summary for verified data

The statistical summary for verified datasets in No.161s and No.162s is shown in Table 4.4. Although the chemical properties in both soils were not largely changed by verification, the data variability of almost all items decreased from the entire dataset. However, these variations were still too large to compare the regular monitoring data among the participating countries, accurately. The variation may include an error produced by same person (repetition), different person (within-laboratory) or different laboratories (inter-laboratory). We separated this variation in next section to detect the source of it.

Table 4.4 Statistical summary of the "verified" dataset*2

			Ex-Ca	Ex-Mg	Ex-K	Ex-Na	Ex-acidity	Ex-Al	Ex-H
Statistics	$pH(H_2O)$	pH(KCl)				cmol _e kg	g ⁻¹		
	No. 161s								
Number of Laboratories	12	13	12	12	7	11	15	13	15
Total average	4.5	3.8	0.35	0.24	0.14	0.06	15.90	14.70	1.09
Median	4.5	3.8	0.35	0.21	0.14	0.06	15.57	14.56	1.02
Maximum	4.7	3.9	0.60	0.35	0.15	0.09	19.64	17.99	2.06
Minimum	4.3	3.6	0.01	0.19	0.12	0.03	13.38	12.28	0.13
Standard deviation	0.1	0.1	0.17	0.06	0.01	0.02	1.66	1.64	0.56
CV (%)*1	2.2	2.6	48.6	25.0	7.1	33.3	10.4	11.2	51.4
	No. 162s								
Number of Laboratories	12	12	12	11	9	11	12	14	13
Total average	4.9	4.1	2.20	0.40	0.16	0.04	2.19	1.80	0.42
Median	4.9	4.1	2.52	0.40	0.15	0.04	2.16	1.81	0.38
Maximum	5.0	4.2	2.85	0.54	0.18	0.06	2.53	2.22	0.89
Minimum	4.6	3.9	0.49	0.31	0.13	0.02	1.77	1.39	0.13
Standard deviation	0.1	0.1	0.83	0.07	0.02	0.01	0.22	0.23	0.22
CV (%)*1	2.0	2.4	37.7	17.5	12.5	25.0	10.0	12.8	52.4

^{*1:} CV, Coefficient of variance (%) = (standard deviation/average) *100.

^{*2:} Dataset is verified removing outliers determined by Cochran-Grubbs methods.

4.3.4 Analysis of variance for verified data

"Repeatability-precision", "within-laboratory-precision" and "inter-laboratories-precision" were discussed using analysis of variance (ANOVA) to detect the source of data variability (Table 4.5).

1) Repeatability-precision

Repeatability-precision was enough high for all properties. The CVs were less than 1% in both $pH(H_2O)$ and pH(KCl), < 7% in Ex-base cations, Ex-acidity and Ex-Al, while it was almost 15% in Ex-H. The result suggests that triplicate analyses were carried out under the same condition. In general, the participating laboratories could analyze the parameters with their own standard procedures and stable instruments.

2) Within-laboratory precision

CVs in within-laboratory precision for almost all parameters were smaller than CVs in repeatability precision. It was suggested that the average of triplicate analyses under the repeatability condition could be representative value for the analysis in a laboratory. We assumed that participating laboratories could analyze the parameters with their own standard procedures.

3) Inter-laboratories precision

The CVs in the inter-laboratories precision were less than 3% in pH (H₂O) and pH (KCl). However, the CVs of the rest of the items ranged from 8 to 53%. Thus, in this inter-laboratory comparison, almost all error in each parameter was produced by different laboratories. We discussed the possible factor of the relatively high CVs in inter-laboratory precision, in the following section.

4) Calculation of permissible tolerance

The repeatability limit and within-laboratory reproducibility limit might be enough small to use as a reference value for the repeat analysis on the instrumental analysis in the respective laboratories. For assessment of temporal pH change of monitoring data at each site, participating laboratories can detect the significant change more than 0.1 pH units. Meanwhile, the result about reproducibility limit (inter-laboratories reproducibility limit) suggested that participating laboratories can detect the significant difference between the monitoring sites if the differences are more than about 0.3 for pH(H₂O), 0.2 for pH(KCl), 0.03-2.4 cmol_c kg⁻¹ for Ex-base cations, 0.7 or 5 cmol_c kg⁻¹ for Ex-acidity and Ex-Al, and 0.6 or 1.6 cmol_c kg⁻¹ for Ex-H.

Table 4.5 Analysis of variance for "verified" dataset

Seminent		1				No. 161s				
Number of Laboratories 12	Statistics	pH(H ₂ O)	pH(KCl)	Ex-Ca	Ex-Mg		Ex-Na	Ex-acidity	Ex-Al	Ex-H
Teal tumer (squage 1900	Number of Laboratories									
Noner of Date and Date and Service (1967) (1										
Nestec of Dias 72 78 72 72 72 42 66 90 78 80 90 78 80 70 78 80 70 80 80 90 78 80 90 78 80 90 78 80 90 78 80 90 78 80 90 78 80 90 78 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	ST/lmd	1400	1100	8.8	4.2	0.83	0.27	23000	17000	110
Teal summ	Number of Laboratories	12	13	12	12	7	11	15	13	15
Teal servings	Number of Data	72	78	72	72	42	66	90	78	90
Sum of squeen whethorizeness (ς_1) and 0.6 of 0.5 of 0.9 of 0.9 of 0.00 o	Total sum	320	300	25	17	5.9	4.2	1400	1100	99
Same of spane within blocasety $\varsigma(s_{pa})$	Total average	4.5	3.8	0.35	0.24	0.14	0.06	15.90	14.70	1.09
Sum of square repeatability (S_1)	Sum of square inter-laboratories (S_R)	0.6	0.5	1.89	0.21	0.00	0.01	231.03	192.64	26.61
Traci sum of square (S)	Sum of square within-laboratory (S_{RW})	0.0	0.0	0.00	0.00	0.00	0.00	2.07	0.78	0.31
Line: bibbracies along of freedom (φ) 11 12 21 11 11 6 10 14 12 13 15 15 15 15 15 15 15	Sum of square repeatablility (S_r)	0.0	0.0	0.01	0.00	0.00	0.00	3.05	2.99	0.27
White historiary suggest of freedom (ϕ_1) (48 5 2 48 68 24 44 60 52 46 47 67 11 15 13 15 15 2 17 14 15 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15	Total sum of square (S _T)	0.7	0.5	1.91	0.22	0.00	0.02	236.15	196.41	27.19
Repeatability degree of freedom (ϕ) 48 8 22 48 48 28 44 00 52 20 07 Tack degree of freedom (ϕ) 71 77 77 71 71 71 41 63 59 77 80 71 60 100 100 100 100 100 100 100 100 100	Inter-laboratories degree of freedom (ϕ_R)	11	12	11	11	6	10	14	12	14
Traid depend of freedom (ϕ_1)	Within-laboratory degree of freedom (ϕ_{RW})	12	13	12	12	7	11	15	13	15
Inter abbrenies variance $(V_{\pi} = S_0 \psi_0)$	Repeatability degree of freedom (ϕ_r)	48	52	48	48	28	44	60		60
White inharmany variance $(V_1, y_1, y_2, y_3, y_4, y_5)$	-	1						_		
Repeatably variance $(V_+ = \hat{\lambda}_1 \hat{\rho})$										
White inhoratory component of variance $(s_1^2 - V_{q-v} V_{j})3$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.										
White inhoratory component of variance $(s_1^2 - V_{q-v} V_{j})3$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Repeatability variance $(V_r = S_r/\phi_r)$									
Repealability component of variantics (s ² v s)										
Inter-shoratories standard deviatinn (n _m = SQRT(n ₂ ('23') n + n ₂ ' 2 + n ₂ ')) 0.0										
Whinishboratory standard deviation ($(a_w = SQRT(x_1^2)^2 + a_s^2)^2$) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.21 0.14 0.08 Repeatability standard deviation ($(a_v = SQRT(x_1^2)^2)^2$) 0.0 0.0 0.0 0.0 0.0 0.0 0.23 0.24 0.07 1nter-laboratories precision CV (%) 0.4 0.6 0.3 3.23 2.63 1.38 3.62 1.35 0.96 7.53 Repeatability precision CV (%) 0.4 0.6 0.3 3.04 4.71 3.86 1.76 0.29 1.42 1.63 6.16 Reproduchabily limit ($R = D(2.095)^{+}w_0$) 0.3 0.4 4.71 3.86 1.76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Repeatability component of variance $(s_r^2 = V_r)$									
Repeatability sandard deviation (s. = SQRT(s. $\hat{\gamma}$)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_									
Withi-aboratory precision CV (%) 0.4 0.6 0.32 2.63 1.38 3.62 1.35 0.96 7.53										
Repeatability precision CV (%)	•									
Repositor-billy limit (R = D(2, 0.59)*s _{pl}) Within-abtoratory-eproducibilly limit (R _w = D(2, 0.95)*s _{pl}) 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		+								
Statistics Statistics Statistics Phttiffs Ph										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Statistics pH(H,O) pH(KC) Ex-Ca Ex-Mg Ex-N Ex-Nation Ex-All 12 12 12 11 13 0.092 350 270 14 Number of Laboratories 12 12 12 11 9 11 12 14 13 Number of Data 72 72 72 72 66 54 66 72 84 78 Total sum 350 290 140 27 8.4 2.5 160 150 33 Total sum of square inter-laboratories (S_0) 10 0.4 45.54 0.33 0.01 0.01 3.31 4.12 3.58 Sum of square repeatability (S_0)										
Total sum of square 120000 85000 25000 700 71 6.1 25000 2300 1100 ST/lmd 1700 1200 350 11 1.3 0.092 350 270 14 1 Number of Laboratories 12 12 12 11 9 11 12 14 13 Number of Data 72 72 72 72 66 54 65 54 78 84 78 78 Total sum 350 290 160 27 8.4 2.5 160 150 33 Total average 4.9 4.1 2.20 0.40 0.16 0.04 2.19 1.80 0.42 Sum of square inter-laboratories (S_R) 1.0 0.4 45.54 0.33 0.00 0.01 0.01 3.31 4.12 3.58 Sum of square within-laboratory (S_R) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.						No. 162s			·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		pH(H ₂ O)	pH(KCl)	Ex-Ca	Ex-Mg		Ex-Na	Ex-acidity	Ex-Al	Ex-H
Number of Laboratories						Ex-K				
Number of Data	Statistics Number of Laboratories	12	12	12	11	Ex-K 9	11	12	14	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square	12 120000	12 85000	12 25000	11 700	Ex-K 9 71	11 6.1	12 25000	14 23000	13 1100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square	12 120000 1700	12 85000 1200	12 25000 350	11 700 11	Ex-K 9 71 1.3	11 6.1 0.092	12 25000 350	14 23000 270	13 1100 14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square ST/Ind	12 120000 1700 12	12 85000 1200	12 25000 350 12	11 700 11	Ex-K 9 71 1.3 9	11 6.1 0.092	12 25000 350 12	14 23000 270 14	13 1100 14 13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of Laboratories Total sum of square ST/lmd Number of Laboratories Number of Data	12 120000 1700 12 72	12 85000 1200 12 72	12 25000 350 12 72	11 700 11 11 66	Ex-K 9 71 1.3 9 54	11 6.1 0.092 11 66	12 25000 350 12 72	14 23000 270 14 84	13 1100 14 13 78
Sum of square repeatability (S_i)	Statistics Number of Laboratories Total sum of square ST/Ind Number of Laboratories Number of Data Total sum	12 120000 1700 12 72 350	12 85000 1200 12 72 290	12 25000 350 12 72 160	11 700 11 11 66 27	Ex-K 9 71 1.3 9 54 8.4	11 6.1 0.092 11 66 2.5	12 25000 350 12 72 160	14 23000 270 14 84 150	13 1100 14 13 78 33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square ST/Ind Number of Laboratories Number of Data Total sum	12 120000 1700 12 72 350 4.9	12 85000 1200 12 72 290 4.1	12 25000 350 12 72 160 2.20	11 700 11 11 66 27 0.40	Ex-K 9 71 1.3 9 54 8.4 0.16	11 6.1 0.092 11 66 2.5 0.04	12 25000 350 12 72 160 2.19	14 23000 270 14 84 150 1.80	13 1100 14 13 78 33 0.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square ST/Imd Number of Laboratories Number of Data Total sum Total average	12 120000 1700 12 72 350 4.9	12 85000 1200 12 72 290 4.1 0.4	12 25000 350 12 72 160 2.20 45.54	11 700 11 11 66 27 0.40 0.33	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01	11 6.1 0.092 11 66 2.5 0.04 0.01	12 25000 350 12 72 160 2.19 3.31	14 23000 270 14 84 150 1.80	13 1100 14 13 78 33 0.42 3.58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Statistics Number of Laboratories Total sum of square ST/Imd Number of Laboratories Number of Data Total sum Total average Sum of square inter-laboratories (S _R)	12 120000 1700 12 72 350 4.9 1.0	12 85000 1200 12 72 290 4.1 0.4 0.0	12 25000 350 12 72 160 2.20 45.54 0.03	11 700 11 11 66 27 0.40 0.33 0.00	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00	12 25000 350 12 72 160 2.19 3.31 0.07	14 23000 270 14 84 150 1.80 4.12 0.21	13 1100 14 13 78 33 0.42 3.58 0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics \\$ Number of Laboratories $Total \ sum \ of \ square \\ ST/Ind \\$ Number of Laboratories $Number \ of \ Data \\ Total \ sum \\ Total \ average \\ Sum \ of \ square \ inter-laboratories \ (S_R) \\ Sum \ of \ square \ within-laboratory \ (S_{RW}) \\ Sum \ of \ square \ repeatability \ (S_t) \\ Total \ sum \ of \ square \ (S_T) \\$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics \\$ Number of Laboratories $Total \ sum \ of \ square \\ ST/Ind \\$ Number of Laboratories $Number \ of \ Data \\ Total \ sum \\ Total \ sum \\ Total \ average \\ Sum \ of \ square \ inter-laboratories \ (S_R) \\ Sum \ of \ square \ within-laboratory \ (S_{RW}) \\ Sum \ of \ square \ repeatablility \ (S_t) \\ Total \ sum \ of \ square \ (S_T) \\ Inter-laboratories \ degree \ of \ freedom \ (\phi_R) \\$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 0.01	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics \\$ Number of Laboratories $Total \ sum \ of \ square \\ ST/Ind \\$ Number of Laboratories $Number \ of \ Data \\ Total \ sum \\ Total \ sum \\ Total \ average \\ Sum \ of \ square \ inter-laboratories \ (S_R) \\ Sum \ of \ square \ within-laboratory \ (S_{RW}) \\ Sum \ of \ square \ repeatability \ (S_t) \\ Total \ sum \ of \ square \ (S_T) \\ Inter-laboratories \ degree \ of \ freedom \ (\phi_R) \\ Within-laboratory \ degree \ of \ freedom \ (\phi_{RW})$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 0.01	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories $Number \ of \ Data$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ vithin-laboratory \ (S_T)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_{RW})$ $Repeatability \ degree \ of \ freedom \ (\phi_t)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 0.01 10 11	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories $Number \ of \ Data$ $Total \ sum$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ vithin-laboratory \ (S_T)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_R)$ $Repeatability \ degree \ of \ freedom \ (\phi_r)$ $Total \ degree \ of \ freedom \ (\phi_r)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 0.01 10 11 44 65	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77
Laboratory component of variance $(s_b^2 = (V_R - V_{RW})/(2^a 3))$ 0.0 0.0 0.0 0.09 0.00 0.00 0.00 0.05 0.05	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories Number of Data $Total \ sum$ $Total \ sum$ $Total \ average$ Sum of \ square \ inter-laboratories \((S_R)\) Sum of \ square \ within-laboratory \((S_{RW})\) Sum of \ square \ within-laboratory \((S_{RW})\) Total \ sum of \ square \ (S_T) Inter-laboratories \ degree \ of \ freedom \((\phi_R)\) Within-laboratory \ degree \ of \ freedom \((\phi_R)\) Repeatability \ degree \ of \ freedom \((\phi_T)\) Inter-laboratories \ variance \((V_R = S_R/\phi_R)\)	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 0.01 10 11 44 65	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories Number of Data $Total \ sum$ $Total \ sum$ $Total \ average$ Sum of \ square \ inter-laboratories \((S_R)\) Sum of \ square \ within-laboratory \((S_{RW})\) Sum of \ square \ within-laboratory \((S_{RW})\) Total \ sum of \ square \ (S_T) Inter-laboratories \ degree \ of \ freedom \((\phi_R)\) Within-laboratory \ degree \ of \ freedom \((\phi_R)\) Repeatability \ degree \ of \ freedom \((\phi_T)\) Inter-laboratories \ variance \((V_R = S_R/\phi_R)\) Within-laboratory \ variance \((V_R = S_R/\phi_R)\) Within-laboratory \ variance \((V_{RW} = S_R/\phi_R)\)	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories $Number \ of \ Data$ $Total \ sum$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ expeatability \ (S_r)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_r)$ $Total \ degree \ of \ freedom \ (\phi_r)$ $Total \ degree \ of \ freedom \ (\phi_r)$ $Inter-laboratories \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_r = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_r = S_R/\phi_R)$ $Repeatability \ variance \ (V_r = S_R/\phi_R)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories $Number \ of \ Data$ $Total \ sum$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ expeatability \ (S_r)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_R)$ $Total \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratories \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Wathin-laboratory \ variance \ (V_R = S_R/\phi_R)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.00	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.05	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories $Number \ of \ Data$ $Total \ sum$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ repeatability \ (S_r)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_R)$ $Total \ degree \ of \ freedom \ (\phi_r)$ $Inter-laboratories \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_T = S/\phi_r)$ $Laboratory \ component \ of \ variance \ (s_c^2 = (V_R - V_{RW})/(2^+3))$ $Within-laboratory \ component \ of \ variance \ (s_c^2 = (V_R - V_r)/3)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 1.8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories Number of Data $Total \ sum$ $Total \ sum$ $Total \ average$ $Sum \ of \ square \ inter-laboratories \ (S_R)$ $Sum \ of \ square \ within-laboratory \ (S_{RW})$ $Sum \ of \ square \ square \ (S_T)$ $Total \ sum \ of \ square \ (S_T)$ $Inter-laboratories \ degree \ of \ freedom \ (\phi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\phi_R)$ $Repeatability \ degree \ of \ freedom \ (\phi_T)$ $Inter-laboratories \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\phi_R)$ $Repeatability \ variance \ (V_r = S_R/\phi_R)$ $Laboratory \ component \ of \ variance \ (s_c^2 = (V_R \cdot V_R w)/(2^*3))$ $Within-laboratory \ component \ of \ variance \ (s_r^2 = V_f)$ $Repeatability \ component \ of \ variance \ (s_r^2 = V_f)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.00 0.00 0.00 0.00	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 1 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.00 0.005 0.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories Number of Data $Total \ sum$ $Total \ average$ Sum of square inter-laboratories (S _R) Sum of square within-laboratory (S _{RW}) Sum of square repeatability (S _r) $Total \ sum \ of \ square \ (S_T)$ Inter-laboratories degree of freedom (ϕ_R) Within-laboratory degree of freedom (ϕ_R) Repeatability degree of freedom (ϕ_R) $Total \ degree \ of freedom (\phi_T) Total \ degree \ of freedom ($	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.83	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 1 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 11 44 65 0.00 0.00 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.00	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01 0.05 0.00 0.01	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.022
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Ind Number of Laboratories Number of Data $Total \ sum$ $Total \ average$ Sum of square inter-laboratories (S _R) Sum of square within-laboratory (S _{RW}) Sum of square repeatability (S _r) $Total \ sum \ of \ square \ epeatability (Sr)$ $Total \ sum \ of \ square \ (ST)$ $Inter-laboratories \ degree \ of \ freedom \ (\varphi_R)$ $Within-laboratory \ degree \ of \ freedom \ (\varphi_R)$ $Total \ degree \ of \ freedom \ (\varphi_r)$ $Total \ degree \ of \ freedom \ (\varphi_r)$ $Unter-laboratories \ variance \ (V_R = S_R/\varphi_R)$ $Within-laboratory \ variance \ (V_R = S_R/\varphi_R)$ $Within-laboratory \ variance \ (V_r = S_r/\varphi_r)$ $Laboratory \ component \ of \ variance \ (s_c^2 = (V_R - V_R W_r)/(2^*3))$ $Within-laboratory \ component \ of \ variance \ (s_r^2 = V_r)$ $Inter-laboratories \ standard \ deviation \ (s_R = SQRT(s_r^2/(2^*3) + s_c^2/2 + s_b^2))$ $Within-laboratory \ standard \ deviation \ (s_{RW} = SQRT(s_r^2/3 + s_c^2))$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.00 0.83 0.03	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 11 14 44 65 0.00 0.00 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.00	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01 0.05 0.00 0.01 0.23 0.07	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.02 0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories Number of Data $Total \ sum$ $Total \ average$ Sum of square inter-laboratories (S _R) Sum of square within-laboratory (S _{RW}) Sum of square repeatability (S _r) $Total \ sum \ of \ square \ (S_T)$ Inter-laboratories degree of freedom (ϕ_R) $Within-laboratory \ degree of freedom (\phi_R) Repeatability \ degree of freedom (\phi_R) Within-laboratories \ variance (V_R = S_R/\phi_R) Within-laboratory \ variance (V_R = S_R/\phi_R) Within-laboratory \ variance (V_r = S_r/\phi_r) Laboratory \ component \ of \ variance (s_c^2 = (V_R - V_R W)/(2^*3)) Within-laboratory \ component \ of \ variance (s_c^2 = V_r) Inter-laboratories \ standard \ deviation (s_R = SQRT(s_r^2/(2^*3) + s_c^2/2 + s_b^2)) Within-laboratory \ standard \ deviation (s_R = SQRT(s_r^2/3 + s_c^2)) Repeatability \ standard \ deviation (s_R = SQRT(s_r^2/3 + s_c^2))$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.83 0.03 0.07	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 14 44 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.02 0.04	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01 0.05 0.00 0.01 0.23 0.07 0.10	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.02 0.03 0.04
Reproducibility limit (R = D(2, 0.95)* s_R) 0.3 0.2 2.33 0.21 0.04 0.03 0.63 0.64 0.62 Within-laboratory-reproducibility limit ($R_W = D(2, 0.95)*s_{Rw}$) 0.0 0.0 0.09 0.02 0.00 0.01 0.12 0.20 0.08	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories Number of Data $Total \ sum$ $Total \ average$ Sum of square inter-laboratories (S _R) Sum of square within-laboratory (S _{RW}) Sum of square epeatability (S _r) $Total \ sum \ of \ square (ST)$ Inter-laboratories degree of freedom (ϕ_R) Within-laboratory degree of freedom (ϕ_R) $Within-laboratories degree of freedom (\phi_R) Total \ degree \ of freedom (\phi_T) Inter-laboratories variance (VR = SR/\phi_R) Within-laboratory variance (VR = SRW/\phi_{RW}) Repeatability variance (Vr = Sr/\phi_r) Laboratory component of variance (sc2 = (VR-VRW)/(2*3)) Within-laboratory component of variance (sc2 = (VR-VRW)/(2*3)) Repeatability component of variance (sr2 = Vt) Inter-laboratories standard deviation (sR = SQRT(sr2/(2*3) + sc2/2 + sb2)) Within-laboratory standard deviation (sR = SQRT(sr2/3 + sc2)) Repeatability standard deviation (sr = SQRT(sr2)) Inter-laboratories precision CV (%)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.83 0.03 0.07 37.79	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.00 0.00 0.00 0.00 11 11 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.00 0.22 0.04 0.05	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01 0.05 0.00 0.01 0.23 0.07 0.10	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.22 0.03 0.04 52.49
Within-laboratory-reproducibility limit ($R_W = D(2, 0.95) *s_{R_W}$) 0.0 0.0 0.09 0.02 0.00 0.01 0.12 0.20 0.08	$Statistics$ Number of Laboratories $Total \ sum \ of \ square$ ST/Imd Number of Laboratories Number of Data $Total \ sum$ $Total \ average$ Sum of square inter-laboratories (S _R) Sum of square within-laboratory (S _{RW}) Sum of square repeatability (S _r) $Total \ sum \ of \ square (ST)$ Inter-laboratories degree of freedom (ϕ_R) $Within-laboratory degree of freedom (\phi_R) Total \ sum \ of \ square (ST) Inter-laboratories degree of freedom (\phi_R) Within-laboratory degree of freedom (\phi_R) Within-laboratory \ variance (V_R = S_R/\phi_R) Within-laboratory variance (VR = SRW/\phi_{RW}) Repeatability \ variance (V_r = S_r/\phi_r) Laboratory component of variance (ss2 = (VR-VRW)/(2*3)) Within-laboratory component of variance (ss2 = Vr) Inter-laboratories standard deviation (sR = SQRT(sr2/(2*3) + sc2/2 + sb2)) Within-laboratory standard deviation (sR = SQRT(sr2/3 + sc2)) Repeatability \ standard \ deviation (sr = SQRT(sr2)) Inter-laboratories precision CV (%)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.83 0.03 0.07 37.79 1.39	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.00 0.00 0.00 0.00 11 11 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.00 0.02 0.04 0.05 10.22 1.95	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.01 0.05 0.00 0.01 0.23 0.07 0.10 12.79 3.91	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.02 0.03 0.04 52.49 6.89
	Statistics Number of Laboratories Total sum of square ST/Imd Number of Laboratories Number of Data Total sum Total average Sum of square inter-laboratories (S_R) Sum of square within-laboratory (S_{RW}) Sum of square repeatability (S_r) Total sum of square (S_T) Inter-laboratories degree of freedom (ϕ_R) Within-laboratory degree of freedom (ϕ_R) Repeatability degree of freedom (ϕ_T) Inter-laboratories variance ($V_R = S_R/\phi_R$) Within-laboratory variance ($V_R = S_R/\phi_R$) Within-laboratory variance ($V_R = S_R/\phi_R$) Laboratory component of variance ($S_r^2 = (V_R \cdot V_R \cdot V_r)/3$) Repeatability component of variance ($S_r^2 = V_T$) Inter-laboratories standard deviation ($S_R = SQRT(S_r^2/(2^*3) + S_c^2/2 + S_b^2)$) Within-laboratory standard deviation ($S_R = SQRT(S_r^2/3 + S_c^2)$) Repeatability standard deviation ($S_R = SQRT(S_r^2/3 + S_c^2)$) Repeatability standard deviation ($S_R = SQRT(S_r^2/3 + S_c^2)$) Inter-laboratories precision CV (%) Within-laboratory precision CV (%)	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.1 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.00 0.00 0.83 0.03 0.07 37.79 1.39 3.11	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.00 0.00 0.00 0.00 10 11 11 10 10 10 10 10 10	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.00 0.22 0.04 0.05 10.22 1.95 2.29	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.05 0.00 0.01 0.23 0.07 0.10 12.79 3.91 5.79	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.22 0.03 0.04 52.49 6.89 9.44
Repeatability limit $(r = D(3, 0.95) *s_t)$ 0.1 0.0 0.23 0.03 0.01 0.01 0.17 0.34 0.13	Statistics Number of Laboratories Total sum of square ST/Imd Number of Laboratories Number of Data Total average Sum of square inter-laboratories (S_R) Sum of square within-laboratory (S_{RW}) Sum of square repeatability (S_r) Total sum of square (S_T) Inter-laboratories degree of freedom (φ_R) Within-laboratory degree of freedom (φ_R) Repeatability degree of freedom (φ_r) Total degree of freedom (φ_r) Total degree of freedom (φ_r) Total degree of freedom (φ_r) Repeatability variance $(V_R = S_R/\varphi_R)$ Within-laboratory variance $(V_R = S_R/\varphi_R)$ Within-laboratory variance $(V_r = S_r/\varphi_r)$ Laboratory component of variance $(s_r^2 = (V_R \cdot V_R w)/(2*3))$ Within-laboratory component of variance $(s_r^2 = V_R)$ Inter-laboratories standard deviation $(s_R = SQRT(s_r^2/(2*3) + s_c^2/2 + s_b^2))$ Within-laboratory standard deviation $(s_R = SQRT(s_r^2/3 + s_c^2))$ Repeatability standard deviation $(s_r = SQRT(s_r^2/3 + s_c^2))$ Inter-laboratories precision $(V_R \cdot w)$ Repeatability precision $(V_R \cdot w)$ Repeatability precision $(V_R \cdot w)$ Repeatability precision $(V_R \cdot w)$	12 120000 1700 12 72 350 4.9 1.0 0.0 0.0 1.0 11 12 48 71 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.	12 85000 1200 12 72 290 4.1 0.4 0.0 0.0 0.4 11 12 48 71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12 25000 350 12 72 160 2.20 45.54 0.03 0.22 45.79 11 12 48 71 4.14 0.00 0.00 0.69 0.00 0.83 0.03 0.07 37.79 1.39 3.11 2.33	11 700 11 11 66 27 0.40 0.33 0.00 0.00 0.33 10 11 44 65 0.03 0.00 0.00 0.01 0.00 0.00 11 11 11 12 13 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18	Ex-K 9 71 1.3 9 54 8.4 0.16 0.01 0.00 0.00 0.01 8 9 36 53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	11 6.1 0.092 11 66 2.5 0.04 0.01 0.00 0.00 10 11 44 65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	12 25000 350 12 72 160 2.19 3.31 0.07 0.12 3.50 11 12 48 71 0.30 0.01 0.00 0.05 0.00 0.05 10.22 1.95 2.29 0.63	14 23000 270 14 84 150 1.80 4.12 0.21 0.61 4.93 13 14 56 83 0.32 0.01 0.05 0.00 0.01 0.23 0.07 0.10 12.79 3.91 5.79 0.64	13 1100 14 13 78 33 0.42 3.58 0.03 0.08 3.70 12 13 52 77 0.30 0.00 0.00 0.05 0.00 0.00 0.02 0.03 0.04 52.49 6.89 9.44

4.3.5 Inter-laboratory variations in each parameter

To assess the precision in each laboratories and properties, we showed scatter plots between No.161s and No.162s with its "verified" mean indicated by solid line (Figure 4.2). As a guide for comparison, mean \pm standard deviation was added by dotted lines. The plot did not include extreme outliers for eye-friendly.

1) pH

Linear correlation between No.161s and No.162s indicated the systematic errors of the inter-laboratory variation in pH(H_2O) and pH(KCl). The systematic error might be caused by the condition of pure water, standard solution or glass electrode. In addition, measuring time to the stabilization of value may lead to the variation because a carbon dioxide pressure, leakage of KCl solution from the electrode or settling the clay particles in the sample tube change the ion balance in soil suspension. Meanwhile, most laboratories were included within the range of mean \pm S.D. for No.161s and No.162s.

2) Base cations

Linear correlation between the samples for Ex-base cations indicated the systematic error of the inter-laboratory variation, while most laboratories were included within the range of verified mean \pm S.D. The correlations were clear in Ex-K and Na. This might be caused by the condition of pure waters, standard solution and so on. The plots of Ex-Ca and Mg suggested random errors in a few laboratories. The errors might be caused by a calculation procedure, operation of the equipment, the contamination, and/or quality of ammonium acetate (extraction liquid). In the analysis of base cations, higher concentration or higher pH of extraction liquid may result in an increase of the base cations in the solution. To prepare appropriate standard solution from low to high concentrations is also important factor for reducing the error. Extraction liquid should be used for standard solution to minimize the matrix effect.

3) Acidity

The plots of Ex-acidity seemed to indicate the systematic error of inter-laboratory variation. The error might be derived from the manipulation of titration by each analyst, which is easily affected by factor of volumetric solution or end-point detection. In the plots of Ex-Al and H, some more random errors were suggested probably because of their analytical steps. Participating laboratories should check the standard of procedure based on *Technical Manual for Soil and Vegetation Monitoring* (EANET, 2000).

Figure 4.2 Scatter plots of each soil chemical property between No.161s and No.162s (Solid and dotted lines indicate mean and mean \pm S.D. of verified datasets, respectively.)

4.3.6 Comparison with information on Laboratories

1) Number of analysts and their experience

Number of analysts and years of their experience are shown in Table 4.6. The same analyst carried out the repeat analyses in some laboratories for all parameters. No relationship between the number of analyst, years of experience and the outliers was suggested.

2) Analytical instruments and condition of instruments

Analytical instruments used for the measurement, procedures for extraction of base cations, and size of burette used for the titration method in Ex-acidity are shown in Table 4.7. Ex-base cations were analyzed either ICP-AES, ICP-OES or AAS. FEP was not used in the 18th inter-laboratory comparison. Years in use of instruments ranged from 1 to 31.

Five laboratories used percolation tube procedures for extraction of exchangeable base cations, while Buchner funnel procedures, centrifuge procedures and automatic extractor procedures were used in 4, 2 and 1 laboratories, respectively. No clear difference was observed among data by different procedures. As for the size of burette for titration of Ex-acidity, the capacities were varied from 5 to 50 ml while minimum graduates were 0.00125 to 0.1.

3) Date of analysis

Dates of analysis in the respective laboratories and days used for the analysis are shown in Table 4.8. There was no significant implication between date of analysis and the data. Days used for the analysis were only one or two days in most laboratories. Interval between the first and second analyses of the repeat analyses was varied from 0 (in a same day) to 50 days. It was suggested that repeat analyses would be carried out with several-day interval (three days or more) in order to estimate actual within-laboratory reproducibility, as a supplementary instruction for the project, based on the discussion at the third session of the Scientific Advisory Committee on EANET (SAC3). Mostly half of the laboratories followed the recommendation, although a few laboratories might conduct the instrumental analysis of both samples in a same day.

Table 4.6 Number and experience of analyst

		Ex-base cations	S		Ex-acidity		
Lab.	Number	Years of ex	perience	Number	Years of ex	xperience	Analyst
	of analyst	Chemical	Soil	of analyst	Chemical	Soil	_
CN01	2	6	6	2	6	6	s
CN02	1	11	11	1	11	11	s
CN03	1	6	6	1	21	18	d
CN04	1	10	8	1	10	8	s
ID01	1	12	9	1	12	9	s
ID04	1	34	32	1	18	16	d
JP04	1	1	1	1	1	1	S
JP10	1	11	2	1	9	2	d
MN01	-	-	-	1	15	15	-
RU01	1	16	13	1	16	13	S
TH01	1	13	13	1	23	6	d
VN01	1	24	19	1	24	19	S
VN02	-	-	-	1	12	8	-
VN04	2	10	9	1	12	11	d
VN05	-	-	-	1	12	3	-

^{-,} not analyzed; n, no information; s, same analysts; d, different analysts.

Table 4.7 Analytical instruments and their conditions for exchangeable cations

		Ex-C	a	Ex-M	g	Interference	Ex-K		Ex-N	a	Interference	Procedures for			y, Al and H of burette (ml)
Lab.	Sample		**			depressant					depressant	extraction of Ex-base	method		
		Instrument	Years 1		Years	for Ca and Mg	Instrument	Years	Instrument		for K and Na	cations		Capacity	Minimum graduate
CN01	No.161	AAS	14	AAS	14	La	AAS	14	AAS	14	La	Centrifuge	Titration	10	0.1
	No.162	AAS	14	AAS	14	La	AAS	14	AAS	14	La			10	0.1
CN02	No.161	AAS	11	AAS	11	Sr	AAS	11	AAS	11	Sr	Percolation tube	Titration	25	0.1
	No.162	AAS	11	AAS	11	Sr	AAS	11	AAS	11	Sr			25	0.1
CN03	No.161	AAS	7	AAS	7	Sr	AAS	7	AAS	7	La	Automatic extractor	Titration	5	0.00125
	No.162	AAS	7	AAS	7	Sr	AAS	7	AAS	7	La			5	0.00125
CN04	No.161	ICP	7	ICP	7	+	ICP	7	ICP	7	+	Percolation tube	Titration	25	0.1
	No.162	ICP	7	ICP	7	+	ICP	7	ICP	7	+			25	0.1
ID01	No.161	AAS	12	AAS	12	La	AAS	12	AAS	12	La	Centrifuge	Titration	50	0.05
	No.162	AAS	12	AAS	12	La	AAS	12	AAS	12	La			50	0.05
ID04	No.161	AAS	2	AAS	1	+	AAS	1	AAS	1	+	Percolation tube	Titration	50	0.02
	No.162	AAS	2	AAS	1	+	AAS	1	AAS	1	+			50	0.02
JP04	No.161	ICP	5	ICP	5	Sr	ICP	5	ICP	5	Sr	Buchner funnel	Titration	25	0.1
	No.162	ICP	5	ICP	5	Sr	ICP	5	ICP	5	Sr			25	0.1
JP10	No.161	ICP	16	ICP	16	Sr	ICP	16	ICP	16	Sr	Percolation tube	Titration	10	0.05
	No.162	ICP	16	ICP	16	Sr	ICP	16	ICP	16	Sr			10	0.05
MN01	No.161												Titration	25	0.1
	No.162						-							25	0.1
RU01	No.161	AAS	31	AAS	31	+	AAS	31	AAS	31	na	Percolation tube	Titration	10	0.02
	No.162	AAS	31	AAS	31	+	AAS	31	AAS	31	na			10	0.02
TH01	No.161	ICP-OES	8	ICP-OES	8	na	ICP-OES	8	ICP-OES	8	na	Buchner funnel	Titration	25	0.05
	No.162	ICP-OES	8	ICP-OES	8	na	ICP-OES	8	ICP-OES	8	na			25	0.05
VN01	No.161	AAS	10	AAS	10	+	AAS	10	AAS	10	+	Buchner funnel	Titration	10	0.05
	No.162	AAS	10	AAS	10	+	AAS	10	AAS	10	+			10	0.05
VN02	No.161												Titration	10	0.05
	No.162						-							10	0.05
VN04	No.161	AAS	11	AAS	11	+	AAS	11	AAS	11	+	Buchner funnel	Titration	10	0.05
	No.162	AAS	11	AAs	11	+	AAS	11	AAS	11	+			10	0.05
VN05	No.161												Titration	10	0.05
	No.162						-							10	0.05

Table 4.8 Date of analysis and days used for the analysis

			pН		Ex	-Ca and Mg		E	x-K and Na		Ex-	acidity, Al and	l H
Lab.	Repeat	Date*1	Analysis*2		- Date*1	Analysis*2	Interval*3	Date*1	Analysis*2		Date*1	Analysis*2	
			Da	ays		Da	ys		Da	ys		D	ays
CN01	1st	2017/3/6	2	0	2017/3/17	5	0	2017/3/17	5	0	2017/3/16	4	1
	2nd	2017/3/6	1		2017/3/17	3		2017/3/17	3		2017/3/17	3	
CN02	1st	2017/2/23	1	1	2017/2/24	2	1	2017/2/24	2	1	2017/2/27	1	1
	2nd	2017/2/24	1		2017/2/25	2		2017/2/25	2		2017/2/28	1	
CN03	1st	2016/12/2	2	50	2017/1/18	3	2	2017/1/18	3	2	2017/1/14	2	14
	2nd	2017/1/21	2		2017/1/20	3		2017/1/20	3		2017/1/28	3	
CN04	1st	2016/11/17	1	27	2017/2/13	8	0	2017/2/13	8	0	2016/12/16	7	0
	2nd	2016/12/14	1		2017/2/13	5		2017/2/13	5		2016/12/16	3	
ID01	1st	2016/11/2	1	5	2016/11/25	4	20	2016/11/25	4	20	2016/11/8	2	1
	2nd	2016/11/7	1		2016/12/15	3		2016/12/15	3		2016/11/9	2	
ID04	1st	2016/11/16	2	6	2016/11/23	9	7	2016/11/23	9	7	2016/11/18	4	7
	2nd	2016/11/22	1		2016/11/30	7		2016/11/30	7		2016/11/25	4	
JP04	1st	2016/11/18	8	20	2017/1/24	1	1	2017/1/24	1	1	2016/11/25	10	10
	2nd	2016/12/8	7		2017/1/25	1		2017/1/25	1		2016/12/5	4	
JP10	1st	2016/12/5	1	3	2017/2/23	50	0	2017/2/23	50	0	2016/12/13	1	1
	2nd	2016/12/8	1		2017/2/23	49		2017/2/23	49		2016/12/14	1	
MN01	1st	2017/2/15	8	0							2017/2/15	8	0
	2nd	2017/2/15	8			-			-		2017/2/15	8	
RU01	1st	2017/1/24	1	6	2017/1/24	2	8	2017/1/24	2	8	2017/1/25	1	8
	2nd	2017/1/30	1		2017/2/1	2		2017/2/1	2		2017/2/2	1	
TH01	1st	2017/4/27	1	6	2017/4/28	2	10	2017/4/28	2	10	2017/4/26	2	6
	2nd	2017/5/3	1		2017/5/8	2		2017/5/8	2		2017/5/2	2	
VN01	1st	2016/12/16	3	7	2016/12/16	3	7	2016/12/16	3	7	2016/12/16	3	7
	2nd	2016/12/23	3		2016/12/23	3		2016/12/23	3		2016/12/23	3	
VN02	1st	2016/7/12	1	0							2016/7/12	31	0
	2nd	2016/7/12	1			-			-		2016/7/12	31	
VN04	1st	2016/12/15	2	1	2016/12/14	1	1	2016/12/14	1	1	2016/12/14	1	1
	2nd	2016/12/16	2		2016/12/15	1		2016/12/15	5 1		2016/12/15	1	
VN05	1st	2017/1/7	2	12							2017/1/7	2	12
	2nd	2017/1/19	2			-			-		2017/1/19	2	

^{*1,} Finish date of 1st and 2nd analyses; *2, Days used for analysis; *3, Interval between the repeat analyses; +, not reported.

4.4 Needs for improvement of soil analysis

Figure 4.3 shows the change of outlier ratio in all properties and laboratories from 2002 to 2016 (the ratio is calculated by $\{(N \text{ of entire dataset}) - (N \text{ of verified dataset})\} / (N \text{ of entire dataset})$. Although the ratio decreased from first experiment in 2002, this is still high (10-20% from 2003 to 2016). Outliers may disturb evaluation and understanding of actual monitoring data. For the inter-laboratory comparison project on soil, a decrease in the outliers is most important task in near future. Appropriate standard solution, extraction liquid, dilution rate and calculation should be checked to reduce extremely different values considered as outliers.

Figure 4.3 Change of the outlier ratio in all properties and laboratories from 2002 to 2016 calculated by $\{(N \text{ of entire dataset}) - (N \text{ of verified dataset})\} / (N \text{ of entire dataset})$. "a" and "b" show the 2 kinds of the samples in each year (e.g. 161s and 162s). The ratios from 2002 to 2015 were from Report of Inter-Laboratory Comparison Project 2000-2015 (http://www.eanet.asia/product/index.html).

4.5 Recommendations

Reducing the outliers (about 15% of all data) in exchangeable base and acid cations will be considered firstly. In addition, the precision for the samples with low concentrations should be improved. The condition of standard solution, extraction liquid, dilution rate, calculation and operation of equipment will be checked. Analyst needs an effort to improve the standard of procedure in each laboratory. Not only analytical procedures but also reporting procedures should be checked carefully.

References

EANET (2000). *Technical Documents for Soil and Vegetation Monitoring in East Asia*: Acid Deposition and Oxidant Research Center, Niigata, Japan.

Japanese Standards Association (1991). *General rules for permissible tolerance of chemical analyses and physical tests (JIS Z-8402-1991)*: Japanese Standards Association, Tokyo, Japan.

Appendix Table 4.1 Results submitted by the laboratories (sample No. 161s)

		Repeat	0.17	0.23	0.20	0.22	0.20	0.20	2.17	2.17	2.17	1.95	1.84	5.06	1.02	1.02	1.02	1.02	1.02	1.02	1.65	6.6	1.8 49.1	. 09	1.64	0.56	0.76	0.76	0.81	0.91	1.10	97.	1.07	1.11	1.18	99.0	0.64	0.59	0.62	0.58	220
Ex-H	(cmol _c kg ⁻¹)	Ave. Ro	0.20	(0.03)	_		(0.01))	2.17	(0.00)	. 4	1.95	(0.11)	ì		(0.00)	. ,		(0.00)		1.73		- 58				(0.12)	280)		(0.01)				0.63 ((0.04)	-		(0.04)	
E	(cmo	Lab Ave. 7 (S.D.) (3	0.20	(0.02)			_						_			(0.00)			0		1.65)			(0.12)		_			(0.05)					(0.04)			_	
					5	9	4	3			4	'n	4				2	2	-	2			0 0	1 1	· ic			- v	ž.	9			. ,	0	1 4			9	, ,	6	_
	-T-	Repeat	15.15	14.35	14.75	14.76	14.64	14.73	13.73		13.84	13.73						12.52		12.52	13.83		13.65					14.57		14.86			11.97			15.50	15.81			16.29	16.5
Ex-Al	(cmol, kg ⁻¹)	Ave. (S.D.)	14.75	(0.40)		14.71	(0.00)		13.76	(0.00)		13.80	(0.00)		12.51	(0.03)		12.82	(0.51)		13.71	(0.11)	13.55	(0.02)		14.60	(0.06)	14.92	(0.00)		12.38	(0.65)	5.	(0.74)		15.78	(0.27)		16.53	(0.24)	
		Lab Ave. (S.D.)	14.73	(0.26)					13.78	(0.00)					12.66	(0.37)					13.63	(0.11)				14.76	(0.18)				12.28	(0.63)				16.15	(0.47)				
	ĺ	Repeat	15.32	14.58	14.95	14.98	14.85	14.93	15.62	15.62	15.73	15.41	15.41	15.62	13.50	13.54	13.54	13.54	14.43	13.54	15.48	15.32	15.00	15.15	15.18	15.22	15.33	15.33	15.77	15.77	14.23	13.13	13.05	14.06	12.92	16.16	16.44	16.62	17.40	16.88	17.06
Ex-Acidity	(cmole kg-1)	Ave. (S.D.)	14.95	(0.37)		14.92	(0.07)		15.66	(0.00)		15.48	(0.13)		13.53	(0.03)		13.84	(0.51)		15.43	(60:0)	15 11	(0.0)	(50:0)	15.29	(0.00)	15.77	(0.00)		13.47	(0.66)	200	0.67		16.41	(0.23)		17.11	(0.26)	
Ey	(сі	Lab Ave. (S.D.)	14.93	(0.24)					15.57	(0.13)					13.68	(0.37)					15.27	(0.19)				15.53	(0.26)				13.38	(0.60)				16.76	(0.44)				
		Repeat	0.03	0.03	0.04	0.03	0.03	0.03	0.07	0.07	0.07	0.07	0.07	0.07	80.0	0.09	0.09	0.09	0.09	0.09	0.07	0.00	0.00	0.06	0.06	0.09	0.07	0.08	0.07	0.08	0.14	0.14	0.14	0.13	0.14	0.05	0.05	0.05	0.05	90.0	0.05
Ex-Na	(cmol _c kg ⁻¹)	Ave. F	0.03	(0.00)		0.03	(0.00)		0.07	(0.00)		0.07	(0.00)		60.0	(0.00)		60.0	(0.00)		0.06	(0.01)	90 0	(10.0)	(1010)	80.0	(0.01)	0.07	(0.00)		0.14	(0.00)	5	0.14	(100)	0.05	(0.00)		0.05	(0.00)	
Ξ	(cm	Lab Ave. (S.D.) (0.03	(0.00)					0.07	(0.00)					0.09	(0.00)					90:00	(0.01)				0.08	(0.01)				0.14	(0.00)				0.05	(0.00)				
		Repeat L	0.12	0.12	0.12	0.12	0.12	0.12	0.15	0.15	0.15	0.15	0.15	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.14	0.10	0.15	0.14	0.14	0.14	0.13	0.14 0.14	0.13	0.14	0.36	0.38	0.39	0.30	0.38	0.14	0.14	0.14	0.14	0.15	0.15
Ex-K	(cmol _c kg ⁻¹)	Ave. R (S.D.) R	0.12	(0.00)			(00.0)		0.15	(0.00)			(0.00)			(0.00)			(0.00)		0.15		0 14	_			(0.00)	17	_			(0.07)	100				(0.00)			(0.00)	
Н	(cmc	Lab Ave. (S.D.) (0.12	(0.00)					0.15	(0.00)					0.15						0.14						(0.00)				0.37	(0.01)					(0.00)				
		Repeat La	0.20	0.20	0.21	0.21	0.20	0.20	0.24	0.24	0.24	0.24	0.24	0.24			0.21	0.21	0.21	0.21	0.20	0.50	0.20	0.19	0.20	0.32	0.34	0.30	0.31	0.33	0.34	0.34	0.36	0.33	0.34	0.19	0.18	0.18	0.20	0.20	0.19
Ex-Mg	, kg ⁻¹)	Ave. Re.	0.20 0.	(0.00)	0	0.20 0.		_	0.24 0.	(0.00)	0					(0.00)			(0.00)	0.	0.20		90	_			(0.01) 0.		(0.01) 0.			(0.01) 0.	0 0			0.18 0.	(0.01)			(0.01)	Ö
Ex-	(cmol _c kg ⁻¹)	Lab Ave. A (S.D.) (S		_		0	9		0.24 0			0	9		0.21 0			0	9		0.20 0			9 9	2	0.32 0		C	9		0.35 0	_		9 9	2	0.19 0	_		0	9	
					2	3	1	1			1	0	0				0	2	2				0 -	· 4	· w			0 10	5				4 0		. 6			1	4	3	2
a	(g. ₋₁)	e. Repeat	2 0.32		0.32		1) 0.31								1 0.51				(1) 0.52		4 0.35		0.35		0.33	l	0.36			0.35	0.60		0.64		0.59		1) 0.30			1) 0.33	0.3
Ex-Ca	(cmol _c kg ⁻¹)	.ve. Ave.		_		0.32	(0.01)			(0.00)		0.50	(0.		1 0.51			0.52	(0.0		5 0.34		Ċ	(0.02)			1) (0.01)	C	(0.00)		0.61		03.0	0.00			2) (0.01)		0.33	0.0	
		t Lab Ave. (S.D.)	0.32	(0.01)					0.5	(0.01)					0.51	0.0)					0.35	(0.0)				0.35	(0.0				0.60	0.0)				0.32	(0.0				
		Repeat	3.8	3.8	3.8	3.8	3.8	3.8	3.9	3.9	3.9		3.8	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.7	7.0				3.7	3.7	7.6			3.9	3.9	3.9	3.9	3.9	3.8	3.8	3.8	3.8	3.8	3.8
DHUKUD	pin(inc.)	. Ave. (S.D.)		(0.0)		3.8	(0.0)		3.9	(0.0)		3.8	(0.0)		3.9	(0.0)		3.9	(0.0)		3.7	(0.0)	3.7	(0.0)	(0.0)	3.7	(0.0)	3.7	(0.0)		3.9	(0.0)	000	9.9		3.8	(0.0)		3.8	(0.0)	
		Lab Ave. (S.D.)	3.8	(0.0)					3.8	(0.0)					3.9	(0.0)					3.7	(0.0)				3.7	(0.0)				3.9	(0.0)				3.8	(0.0)				
		Repeat	4.4	4.4	4.4	4.4	4.4	4.4	4.5	4.5	4.4	4.4	4.	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.4	i -	2.4 5.4	4	4.4	4.5	5.5	4. 4. C. 6.	4.5	4.5	4.	4	4. 6	3.9	3.9	4.6	4.6	4.6	4.7	4.7	4.7
(O'H/Ha	(0211)110	Ave. (S.D.)	4.4	(0.0)		4.4	(0.0)		4.4	(0.0)		4.4	(0.0)		4.5	(0.0)		4.5	(0.0)		4.4	(0.0)	44	. 6	(2:0)	4.5	(0.0)	4.5	(0.0)		4.4	(0:0)	,	6.6	(612)	4.6	(0.0)		4.7	(0.0)	
	-	Lab Ave. (S.D.)	4.4	(0.0)					4.4	(0.0)					4.5	(0.0)					4.4	(0.0)				4.5	(0.0)				4.1	(0.3)				4.7	(0.0)				
	Lab		CN01						CN02						CN03						CN04					ID01					ID04					JP04					

Appendix Table 4.1 continued

	(Repeat		_			0 1.98					1.34	0.13	0.11					97.7			1.25				0.82			66.0 66.0 6			66.0			06:0		1.53		1.42	
Fx-H	(cmol _c kg ⁻¹)	e. Ave.		(0.07)		2.00	(0.02	1 24			1.34	(0.00)	0.14	_		0.12	(0.03)		1.57		1.32	(0.14)	0.82	(0.03)		0.83	(0.07		(0.00)	0.99	(0.00)		(0.00)	0	0.90	0.00	1.50	_	- 2	7
	,	Lab Ave. (S.D.)	1.89	(0.12)				1 24	1.34	(00:0)			0.13	(0.03)	,				4.5	(0.21)			0.83	(0.02)				0.99	(0.00)			0.89	(0.01)				1.50	(0.06)		
		Repeat	14.26	14.56	14.50	14.50	14.51	14.47	17.47	17.47	17.47	17.47	15.48	15.60	15.48	15.71	15.62	15.60	14.90	15.10	15.51	15.51	13.98	14.06	13.99	14.06	13.99	15.66	15.66	15.66	15.77	12.66	14.56	14.56	14.56	14.30	17.96	17.96	18.07	5.51
Ex-Al	(cmol _c kg ⁻¹)	Ave. (S.D.)	14.44	(0.16)		14.49	(0.02)	TN 71	4.71	(00:0)	17.47	(0.00)	15.52	(0.06)	,	15.64	(0.06)		14.97	(0.12)	15.44	(0.12)	14.01	(0.05)		14.07	(0.00)	15.70	(0.00)	15.70	(0.06)	14 56	(0.00)	;	14.56	(0.00)	17.99	(0.06)	17 00	11:11
	5)	Lab Ave. (S.D.)	14.47	(0.11)				71 71	7.77	(20.20)			15.58	(0.08)					15.21	(0.20)			14.04	(0.07)				15.70	(0.06)			14 56	(0.00)				17.99	(0.06)		
		Repeat	16.11	16.36	16.22	16.49	16.49	10.49	18.87	18.82	18.82	18.82	15.63	15.72	15.58	15.81	15.74	15.72	15.52	15.26	16.00	16.06	14.83	14.88	14.78	14.88	i 4 2 2 3	16.81	16.81	16.81	16.86	15.81	15.4	15.4	4 5 5	5. 4. 4. 4.	19.60	19.66	19.00	
Ex-Acidity	(cmol _c kg ⁻¹)	Ave. (S.D.)	16.23	(0.13)		16.49	(0.00)	10 00	19.97	(00.0)	18.82	(0.00)	15.64	(0.07)	,	15.76	(0.05)		15.43	(0.1.0)	15.99	(0.08)	14.83	(0.05)		14.90	(0.00)	16.83	(0.03)	16.83	(0.03)	15.44	(0.00)		15.44	(0.00)	19.64	(0.03)	19 64	
Ex	(cn	Lab Ave. (S.D.)	16.36	(0.17)				10 07	79.97	(00:00)			15.70	(0.08)	,				15.71	(0.35)			14.86	(0.07)				16.83	(0.03)			15.44	(0.00)				19.64	(0.03)		
		Repeat	90.0	0.07	0.04	90.0	0.07	0.00	K Z	NA NA	NA	NA V	0.05	0.06	0.05	0.05	0.05	0.05	90.00	0.06	90.0	0.06	0.07	0.07	0.07	0.07	0.07	NA	Y Z	N AN	NA :	NA O	0.08	0.08	80.0	0.08	NA	NA S	Y Z	
Ex-Na	(cmol, kg ⁻¹)	Ave. R	90.0	(0.01)		90.0	(0.01)	MA	NA		NA		0.05	(0.01)	,	0.05	(0.00)		90:00	(000)	90.0	(0.00)	0.07	(0.00)	!	0.07	(00:00)	NA		NA		80.0	(0.00)	0	80.0		NA		Ž	
Ή	(cm	Lab Ave. (S.D.)		(0.01)				ΝΛ	V.				0.05	(0.01)	,			9	0.06	(0.00)			0.07	(0.00)				NA				80.0	(0.00)				NA			
		Repeat	0.13	0.14	0.13	0.14	0.16	C1.0	₹ Z	N AN	NA	NA S	NA 0.13	0.14	0.14	0.14	0.14	0.13	0.13 0.13	0.13	0.14	0.14	0.15	0.15	0.15	0.15	0.15	NA	ΥZ Z	N AN	NA	NA 004	0.04	0.04 2.04	9 S	5 75	NA	NA :	V V	1
Fx-K	(cmol _c kg ⁻¹)	Ave. I	0.14	(0.00)		0.15	(0.01)	VIV	Y.		NA		0.14	(0.00)	,	0.14	(0.01)	9	0.13	(0.00)	0.14	(0.00)	0.15	(0.00)	,	0.15	(0.00)	NA		NA		0.04	(0.00)		9.09	(0.00)	NA		Ž	1
ľ	(cm	Lab Ave. (S.D.)		(0.01)				MA	V.				0.14	(0.00)				9	0.13	(0.00)			0.15	(0.00)				NA				0.04	(0.00)				NA			
		Repeat	0.22	0.28	0.22	0.22	0.24	N.A	V V	NA N	NA	NA	0.20	0.21	0.23	0.20	0.19	0.20	0.21	0.21	0.22	0.22	0.20	0.19	0.19	0.19	0.19	NA	Y Z	N AN	NA :	NA 0 32	0.32	0.32	0.32	0.32	NA	NA :	A V	1
Fx-Mo	(cmol, kg ⁻¹)	Ave. R		_			(0.01)	V.V	K.		NA		0.21	_			(0.01)		0.21			(0.00)	0.19	(0.00)		0.19		NA		NA		0.32	_	- 6	0.32		NA		V.N	1
Ė	(cm	ab Ave. (S.D.)		_				ΝΛ	V.				0.20	(0.01)				0	0.22	(0.00)			0.19	(0.00)				NA				0.32	(0.00)				NA			
		Repeat L	0.39	0.43	0.36	0.40	0.45	0.43 NA	V V	NA VA	NA	NA	0.40	0.37	0.47	0.41	0.38	0.38	0.34	0.33	0.34	0.34	0.01	0.01	0.01	0.01	0.01	NA	Y Z	N AN	NA :	NA 0.08	0.08	0.08	0.08	0.08	NA	NA S	Y Z	
Ex-Ca	(cmol _c kg ⁻¹)	Ave. I	0.39	(0.03)		0.43	(0.02)	VIV	Y.		NA		0.41	(0.05)	,	0.39	(0.02)		\$ 6 8 8	(0.00)	0.34	(0.00)	0.01	(0.00)		0.01	(0.00)	NA		NA		800	(0.00)	0	80.0	(0.00)	NA		V.V	1
ľ	(сп	Lab Ave. (S.D.)		(0.03)				MA	NA NA				0.40	(0.04)					0.34	(0.00)			0.01	(0.00)				NA				0.08	(0.00)				NA			
		Repeat L		3.8	3.8	3.8	% % %	0.0	4. 4 4. c	1 4 2 5	4.2	2.4	2.5	3.8	3.8	3.8	3.8	3.8	x x	3.9	3.9	3.9	3.8	3.7	3.8	00 00 00 00	3.8	3.6	3.6	3.6	3.6	3.6	3.6	3.6	0.4.0	0.4.	3.7	3.7); L	
	pH(KCl)	Ave. F	3.8	(0.0)		3.8	(0.0)	,	2.6	(0.0)	4.2	(0.0)	8	(0:0)		3.8	(0.0)	0	x 6	(0:0)	3.9	(0.0)	3.8	(0.0)		3.8 6	(0.0)	3.6	(0.0)	3.6	(0.0)	3.6	(0.0)	•	0.4.6	(0.0)	3.7	(0.0)	7.2	
	łd	Lab Ave. (S.D.)		(0.0)				, ,	2.6	(0:0)			800	(0:0)	,			0	3.9	(0:0)			3.8	(0.0)				3.6	(0.0)			×	(0.2)				3.7	(0.0)		
		Repeat	4.5	4.5	4.5	4.5	5.4 5.4	C. +	4 4	1.4	4.1	1.1	1.4	2.4	4.3	4.3	4.3	4.3	4 ر د م	5.4	4.5	5.5	5. 4.	4.3	6.3	4	1 4 1 4	4.5	4. د د. م	t. 4.	5.5	3.6	3.6	3.6	3.6	3.6	4.5	4.5	č. 4 č. 4	ŕ
	pH(H ₂ O)	Ave. 1	4.5	(0.0)		4.5	(0.0)	- 7	4 6	(0.0)	4.1	(0.0)	4.3	(0.0)	,	4.3	(0.0)		v. 4	(0.0)	4.5	(0.0)	4.3	(0.0)		4.6	(0.0)	4.5	(0.0)	4.5	(0.0)	3.6	(0.0)	,	3.6	(0.0)	4.5	(0.0)	2.4	ŕ
	ld	Lab Ave. (S.D.)	4.5	(0.0)				11	1.6	(0:0)			4.3	(0:0)					₹.5 ₹.6	(0.0)			4.4	(0.0)				4.5	(0.0)			3.6	(0.0)				4.5	(0.0)		
	I.ah		JP10					MANTOI	MINOI				RUOI						IHOI				VNOI					VN02				VN04					VN05			

Appendix Table 4.2 Results submitted by the laboratories (sample No. 162s)

		Repeat	0.09	0.14	0.16	0.13	0.13	0.13	0.81	0.81	1.01	0.91	0.91	0.91	99.0	0.71	99.0	69.0	99.0	0.65	09.0	0.61	0.65	0.63	0.64	0.65	0.45	8.0 4.0	0.35	0.26	0.35	0.31	0.33	0.36	0.40	0.42	0.49	4	0.50	0.48	0.39	0.49
Ех-Н	(cmol _c kg ⁻¹)	Ave. Re	0.13 ((0.03)			(0.00)		0.88	(0.12)	_	0.91	(0.00)	0	0.68		_	0.67	(0.02))		(0.03)			(0.01))		(00:0)	0.32	_)		(0.02)			(0.02)	0.48				(0.00)	
Ex	(cmo)	Lab Ave. A (S.D.) (S		(0.02)	•	_	۳		0.89			Ū	(0.67			_	٣		0.63			_	٣			(/0.0/)	Ū	۳			(0.05)	•	•	=	0.47	_		Ŭ	\leq	
			0.	0)					0.	0)					0.						0						.0	ë,				0.	<u>(</u>				O	9	į			
	(1	Repeat	1.93	1.87	1.74	<u>x</u>	1.85	1.84	1.55	1.55	1.45	1.65	1.65	1.55	2.38	1.72	1.76	1.74	1.76	1.77	1.60	1.51	1.46	1.54	1.55	1.44	1.94	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1.94	2.03	1.94	1.52	1.50	1.47	1.30	1.30	1.73	1.69	1.65	1.69	1.77	1.65
Ex-Al	(cmol _e kg ⁻¹)	Ave. (S.D.)	1.85	(0.10)		<u>x</u>	(0.01)		1.52	(0.00)		1.62	(0.00)		1.96	(0.37)		1.76	(0.02)		1.52	(0.07)		1.51	(0.00)		1.91	(cn:n)	1.97	(0.05)		1.50	(0.05)		1.29	(0.01)	1.69	(40.04)		1.70	(0.00)	
)	Lab Ave. (S.D.)	1.85	(0.06)					1.57	(0.08)					1.86	(0.26)					1.51	(0.00)					1.94	(0.00)				1.39	(0.11)				1.70	(0.05)	Ì			
		Repeat	2.03	2.01	1.90	1.9/	1.98	1.96	2.33	2.33	2.43	2.53	2.53	2.43	3.04	2.43	2.43	2.43	2.43	2.43	2.20	2.12	2.11	2.16	2.18	2.07	2.39	2.29	2.29	2.29	2.29	1.83	1.83	1.83	1.70	1.72	2.22	2.13	2.15	2.17	2.16	2.14
Ex-Acidity	(cmol _c kg ⁻¹)	Ave. (S.D.)	1.98	(0.07)	į.	1.97	(0.01)		2.36	(0.00)		2.50	(0.00)		2.63	(0.36)		2.43	(0.00)		2.14	(0.02)		2.14	(0.00)		2.32	(0.00)	2.29	(0.00)		1.83	(0.00)	i	1.71	(0.01)	2.17	(0.05)		2.16	(0.01)	
Ex	(cr	Lab Ave. (S.D.)	1.97	(0.04)					2.43	(0.09)					2.53	(0.25)					2.14	(0.05)					2.30	(40.04)				1.77	(0.06)				2.16	(0.03)				
		Repeat	0.01	0.02	0.02	0.02	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.03	0.03	0.04	0.04	0.03	0.05	0.05	0.05	0.04	0.05	0.04	0.18	0.18	0.16	0.19	0.18	0.03	0.03	0.03	0.03	0.03	0.03
Ex-Na	(cmol _c kg ⁻¹)	Ave. (S.D.)	0.02	(0.00)	0	0.07	(0.00)		0.04	(0.00)		0.04	(0.00)		0.04	(0.00)		0.04	(0.00)		0.04	(0.00)		0.04	(0.01)		0.05	(0.00)	0.04	(0.00)		0.17	(0.01)		0.18	(0.01)	0.03	000		0.03	(0.00)	
F	(cn	Lab Ave. (S.D.)	0.02	(0.00)					0.04	(0.00)					0.04	(0.00)					0.04	(0.01)					0.04	(0.00)				0.18	(0.01)				0.03	(000)	()			
		Repeat	0.13	0.12	0.14	0.13	0.13	0.13	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.18	0.19	0.19	0.18	0.18	0.15	0.15	0.15	0.16	0.15	0.16	0.15	0.15	0.15	0.15	0.15	0.40	0.39	0.40	0.39	0.39	0.17	0.16	0.16	0.16	0.16	0.16
Ex-K	(cmol _c kg ⁻¹)	Ave. 1	0.13	(0.01)	9	0.13	(0.00)		0.16	(0.00)		0.16	(0.00)		0.18	(0.01)		0.18	(0.00)		0.15	(0.00)		0.16	(0.01)		0.15	(00)	0.15	(0.00)		0.39	(0.01)	0	0.39	(0.01)	0.17	(000)		0.16	(0.00)	
	(cm	Lab Ave. (S.D.)	0.13	(0.00)					0.16	(0.00)					0.18	(0.01)					0.15	(0.00)					0.15	(0.00)				0.39	(0.00)				0.16	000				
		Repeat	0.35	0.36	0.37	0.36	0.36	0.37	0.40	0.40	0.40	0.39	0.40	0.39	0.31	0.31	0.30	0.31	0.31	0.31	0.34	0.34	0.35	0.34	0.34	0.35	0.46	0.45	4.0	0.46	0.46	0.53	0.54	0.55	0.54	0.52	0.31	0.30	0.30	0.33	0.33	0.33
Ex-Mg	(cmol _c kg ⁻¹)	Ave. F	0.36	(0.01)	0	0.36	(0.01)		0.40	(0.00)		0.39	(0.00)		0.31	(0.00)		0.31	(0.01)		0.34	(0.00)		0.34	(0.00)		0.45	(000)	0.45	(0.01)		0.54	(0.01)		0.53	(0.01)	0.30	(10:0)	ì	0.33	(0.00)	
E	(cm	Lab Ave. (S.D.) (0.36	(0.01)					0.40	(0.01)					0.31	(0.00)					0.34	(0.00)					0.45	(0.00)				0.54	(0.01)				0.32	(10.0)	Ì			
		Repeat	2.50	2.53	2.57	7.50	2.52	2.57	2.84	2.82	2.82	2.89	2.86	2.87	2.39	2.54	2.59	2.50	2.49	2.47	2.46	2.71	2.53	2.45	2.51	2.55	2.23	2.38	2.23	2.23	2.31	2.71	2.93	2.91	2.77	2.88	1.95	1.92	1.95	2.07	2.05	2.02
Ex-Ca	(cmol _c kg ⁻¹)	Ave. (S.D.)	2.54	(0.04)	1	7.55	(0.03)		2.83	(0.01)		2.87	(0.02)		2.51	(0.10)		2.49	(0.01)		2.57	(0.13)		2.50	(0.05)		2.30	(0.08)	2.26	(0.04)		2.85	(0.12)		5. 7.	(0.06)	1.94	(0.02)		2.05	(0.03)	
	(сп	Lab Ave. (S.D.)	2.54	(0.03)					2.85	(0.03)					2.50	(0.07)					2.53	(0.10)					2.28	(0.00)				2.84	(0.09)				1.99	(0.06)				
		Repeat	4.1	4.1	6.0	4.1	4.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.2	4.2	4.2	4.2	4.2	4.2	3.9	4.0	4.0	3.9	3.9	4.0	4.0	1.4	4.0	4.0	4.0	4.2	4.2	2.5	4.5	4. 4 2. c	4.1	. 14	1.1	4.1	4.1	4.2
DH(KC)	(120)	Ave. R (S.D.)	4.1	(0.0)	:	4.1	(0.0)		4.1	(0.0)		4.1	(0.0)		4.2	(0.0)		4.2	(0.0)		4.0	(0.0)		3.9	(0.0)		4.0	(0:0)	4.0	(0.0)		4.2	(0.0)		4.2	(0.0)	4.1	00		4.2	(0.0)	
핌	L	Lab Ave. (S.D.) (4.1	(0.0)					4.1	(0.0)					4.2	(0.0)					3.9	(0.0)					4.0	(0.0)				4.2	(0.0)				4.1	0.0				
		Repeat I	4.8	4.7	8.4	8.	4.8	4.7	4.9	4.9	4.9	4.9	4.9	4.9	5.0	5.0	5.0	5.0	5.0	5.0	4.9	4.9	4.9	4.9	4.9	4.9	4.9	y, 4 9, 9	4.9	4.9	4.9	4.8	4.6	4.6	8.	6.4	5.0	5.0	5.0	5.0	5.0	5.1
OH(H	(~7)	Ave. (S.D.)	4.8	(0.0)	•	×.	(0.0)		4.9	(0.0)		4.9	(0.0)		5.0	(0.0)		5.0	(0.0)		4.9	(0.0)		4.9	(0.0)		4.9	(0.0)	4.9	(0.0)		4.7	(0.1)	•	6.4	(0:0)	5.0	00		5.0	(0.0)	
=	1	Lab Ave. (S.D.)	4.8	(0.0)					4.9	(0.0)					5.0	(0.0)					4.9	(0.0)					4.9	(0:0)				4.8	(0.1)				5.0	000	Ì			
	Lab		CN01						CN02						CN03						CN04						ID01					ID04					JP04					

Appendix Table 4.2 continued

								1			;			;								:			;	
4	PH	pH(H ₂ O)		1	pH(KCl)		_	Ex-Ca (cmol _c kg ⁻¹)		т (сп.	Ex-Mg (cmol _c kg ⁻¹)		(cmol	Ex-K (cmol _c kg ⁻¹)		Ex-Na (cmol _c kg ⁻¹)	Na kg ⁻¹)		Ex-Acidity (cmol _c kg ⁻¹)	idity 'g-1)		Ex-Al (cmol _c kg ⁻¹)		٠	EX-H (cmol _c kg ⁻¹)	
	Lab Ave. Ave. (S.D.)		Repeat	Lab Ave. (S.D.)	Ave. (S.D.)	Repeat	Lab Av (S.D.	Lab Ave. Ave. (S.D.)	Repeat	Lab Ave. (S.D.)		Repeat (3	Lab Ave. A (S.D.) (S		Repeat (S.	Lab Ave. A (S.D.) (S.	Ave. Repeat	1	Lab Ave. Ave. (S.D.)	e. S.) Repeat	at (S.D.)	. Ave. (S.D.)	Repeat	Lab Aw (S.D.)	Ave. (S.D.)	Repeat
JP10	4.9	4.9	4.9	4.1	4.1	4.1	2.78	2.76	2.78	0.42	0.41	0.41	0.16	0.15 0	0.15 0.	0.03 0	0.03 0.03		2.49 2.51	51 2.52	2.05	2.06	2.06	0.44	0.45	0.46
	(0.0)	(0.0)	4.9	(0.0)	(0.0)	4.1	(0.14)	(0.11)		(0.02)	(0.01)		(0.01)	(0.01)		(0.01)	(0.01) 0.04		(0.03) (0.02)		(0.01)	(0.00)		(0.02)	(0.02)	0.43
		9	4, 4 V 0		-	4. 4		000				0.42	,		0.15		0.02	7 7	ć	2.52		30.0	9.7		5	0.46
		6.9	6.4		1.6	4 4		(0.19)	2.70		100	0.42	. 9	0.00	0.16	9	0.04	4 Z	(0.00)			(0.01)			0.00	0.43
		Ì	4.9			4.1						0.47	,		0.16			4								0.43
MN01	5.3	5.4	5.4	4.5	4.5	4.5	NA	NA	NA	NA	NA		NA 1	NA N		NA N	NA NA					2.06		1.24	1.24	1.24
	(0.1)	(0.1)	5.4	(0.0)	(0.0)	4.5			NA			NA			NA		NA.		(0.00) (0.00)		(0.00)	(0.00)		(0.00)	(0.00)	1.24
			5.3			5.5		;	A ;		;	AN :	•		AN :	•		∢ .				è				1.24
		5.3	5.3		4.5	4.5		NA	NA I		NA	NA :	•	NA N	NA :	-	NA NA	∀ .	3.30			2.06			1.24	1.24
		(0:0)	5. 5. 3. 3.		(0.0)	2. 4 2. 5			K Z			e z V Z			e z		K Z	∢ ⊲	(0.00)	3.30		(0.00)	2 12		(0.00)	1.24
RU01	4.7	4.7	4.7	4.1	4.1	4.1	0.49	0.50	0.52	0.39	0.41						0.03 0.04					1.62		0.58	0.56	0.57
	(0.0)	(0.0)	4.7	(0.0)	(0.0)	4.1	(0.03)	(0.03)		(0.03)	(0.02)		(0.00)	0 (00:0)		(0.01)	(0.00) 0.03		(0.05) (0.03)		(0.03)	(0.02)		(0.00)	(0.01)	0.57
			4.7			4.1						0.42	,		0.14			4					1.61		1	0.54
		4.7	4.7		4.1			0.49				0.39	_		0.15	ں)3	2.27			1.67			0.61	0.59
		(0.0)	4.7		(0:0)	4.1		(0.02)			(0.02)	0.38	ڪ	0.00)	0.14	೨	(0.00) 0.02	20 5	(0.05)			(0.01)			(0.08)	0.69
		0	7.4			4.1	000	00		100	1		ı	1		ı	1		1				1.69		i	0.55
TH01	6.9	5.0	6.4	4.2	4.2	4.2	2.33	2.32		0.37												1.60		2.6	0.71	0.46
	(0.0)	(0.0)	0.0	(0.1)	(0.0)	4, 4 2, 4	(0.02)		2.31	(0.00)	(0.00)	0.37	(0.00)	0.00)	0.15 0.15	(00.00)	(0.00)		(0.12) (0.17)	2.00	(0.24)	(0.35)	9-1-	(0.18)	(0.22)	25.0 25.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27
		6.4	5.0		4.3	t 4 1 6		2.34			0.37	0.38	_	0.15 0	0.15	0	0.03 0.03	t 53	2.20			1.80	8. 8.		0.56	0.71
		(0.0)	4.9		(0.0)	4.3		(0.02)				0.37	S		0.15	9)3	(0.03)			(0.00)			(0.13)	0.48
			4.9			4.3			2.33			0.37		J	0.15		0.03)3		2.22						0.48
VN01	4.7	4.7	4.7	4.0	4.0	4.1	0.51	0.51		0.41												1.78	1.78	0.24	0.23	0.24
	(0.0)	(0.0)	7.4	(0.0)	(0.0)	4.0	(0.01)	(0.01)		(0.00)	(0.01))) (00:0)	0 (00:00)	0.17 (0.	(0.00)	(0.00) 0.04		(0.03) (0.03)	1.97	(0.02)	(0.01)		(0.02)	(0.02)	0.21
		ţ	4; - - t		-	4, 4						14.0	,	1	7.17			t 2	•				0.1		6	47.0
		. 6	4 4		0.4	9. 4		0.01	0.51		14.0	0.41	- 5		0.17	9 ر	90.04	4 Z	10.2 (0.0)	2.02 II		0.10			6.63	0.20
		(0:0)	7.4		(0:0)	0.4		(0.00)				0.41	٠		0.17	2		t 4	(5)			(20.07)	1.78		(20.02)	0.26
VN02	4.9	4.9	4.9	4.0	4.0	4.0	NA	NA	NA	NA	NA	NA	NA 1	NA N		NA N	NA NA					2.22		0.21	0.21	0.21
	(0.0)	(0.0)	6.4	(0.0)	(0.0)	4.0			AN ;			NA :		- '	NA:		NA Y		(0.03) (0.03)		(0.05)	(0.00)		(0.00)	(0.00)	0.21
		4.9	9.4 9.9		4.0	4. 4. 0. 0.		NA	K Z		NA	K Z	1	N V	Y Z	_	AN AN	₹ ₫	2.53	2.56		2.22	2.26		0.21	0.21
		(0.0)	4.9		(0.0)	4.0			NA			NA			NA			NA	(0.03)			(0.00)			(0.00)	0.21
			4.9			4.0			NA														2.15			0.21
VN04	4.9	6.4	8.	4.0	4.0	4.0	2.72		2.70	0.51			0.05	0.05 0	0.05 0.	0.06	0.06 0.06		2.07 2.07	77 2.07	1.89	1.89	1.89	0.17	0.16	0.16
	(0.0)	(0.0)	6.4	(0.0)	(0.0)	4. 4 0. 4	(0.01)	(0.02)		(0.00)	(0.00)	0.51							(0.00)			(0.00)	1.89	(0.01)	(0.00)	0.16
		4.9	t 4		4.0	4.0		277	17.7 17.0			0.51		0 05 0	0.05	0	0.06	0.00	2.07			1 80	6		0.18	0.10
		000	. 4		000	0.4		(00)			000	0.51	~		0.05	9		2 9	000			000	8: -		000	0.18
			4.9)	4.0						0.51			0.05			9(0.18
VN05	4.6	4.6	4.6	3.9	3.7	3.7	NA	NA	NA	NA	NA	NA	NA I	NA N		NA N	NA NA		3.56 3.55	3.54	3.07	3.09		0.35	0.35	0.31
	(0.0)	(0.0)	9.4	(0.2)	(0.0)	3.7			A Z			AN A		~ ^	NA V		A Z		03) (0.03)			(0.00)	3.02	(0.05)	(0.00)	0.42
		9	4, 4 0 A		-	· · ·		V.V	K Z		V	Y Y	_	- Z	NA VI	_	NA AN	€ <	2 0			2.05			0.35	0.31
		o é	j -		. i	; -					Ų.	V.V				-		τ <	3.57			0.00			3.5	10.0
		(0.0)	4. 4 0. 4		(0:0)	4 -			Y Z			K Z			A N		K Z	∢ <). (V.1	3.59 3.50		(0.00)	3.02		(0.06)	0.42
			ţ			ř			UNI			rvi			CV.		. 7	4		10.0			3.02			10.0

5. 17th INTER-LABORATORY COMPARISON PROJECT ON INLAND AQUATIC ENVIRONMENT

5.1 Introduction

In the Inter-laboratory Comparison Project on inland aquatic environment, an artificial inland water sample containing known concentrations of major ions was prepared and sent to the EANET participating countries by the Network Center (NC). The measured results of pH, EC, alkalinity and concentrations of SO_4^{2-} , NO_3^- , Cl^- , Na^+ , K^+ , Ca^{2+} , Mg^{2+} and NH_4^+ in the participating laboratories were compared with the prepared values and the results were statistically analyzed.

5.2 Procedures

5.2.1 Participating Laboratories

In the 17th Project, the NC shipped an artificial inland water sample to 24 laboratories involved in the EANET activities on October 18, 2016, and most of them submitted their analytical data to the NC by February 28, 2017. Participating laboratories and their identification codes are listed in Table 1.1. For this attempt, the laboratory MN01 submitted the data of 3 parameters, namely pH, EC and alkalinity.

5.2.2 Description of Sample

A description of the sample is given in Table 5.1.

Table 5.1 Description of the artificial inland water sample

Name	Amount of the	Container	Number of	Note
	sample		samples	
A(1.C) 1 ! 1 1	A	D 1 4 1 1		T 1
Artificial inland	Approximately	Poly-ethylene	One bottle	To analyze

The analytical parameters are shown in Table 5.2.

Table 5.2 Analytical parameters

Analytical Parameter	Reporting Units	
рН	pH units	_
EC	milli siemens per meter	$mS m^{-1}$
Alkalinity	milli equivalent per liter	$meq L^{-1}$
$\mathrm{SO_4}^{2-}$	milli gram per liter	${ m mg}~{ m L}^{-1}$
NO_3^-	milli gram per liter	$mg L^{-1}$
Cl ⁻	milli gram per liter	$mg L^{-1}$
Na^+	milli gram per liter	$mg L^{-1}$
\mathbf{K}^{+}	milli gram per liter	${ m mg}~{ m L}^{-1}$
Ca^{2+}	milli gram per liter	$mg L^{-1}$
Mg^{2+}	milli gram per liter	${ m mg}~{ m L}^{-1}$
$\mathrm{NH_4}^+$	milli gram per liter	$mg L^{-1}$

The participating laboratories were informed that concentration of each parameter was prepared within the range described in Table 5.3.

Table 5.3 Concentration range of artificial inland water sample

Parameter	Range	Parameter	Range
pН	5.0 - 8.0	Na ⁺	$1-10\;mg\;L^{-1}$
EC	$1.5-15\ mS\ m^{-1}$	K^+	$0.2 - 2 \ mg \ L^{-1}$
Alkalinity	$0.05 - 0.5 \text{ meq } L^{-1}$	Ca^{2+}	$0.5 - 5 \text{ mg L}^{-1}$
$\mathrm{SO_4}^{2-}$	$2 - 20 \text{ mg L}^{-1}$	Mg^{2+}	$0.2 - 2 \text{ mg L}^{-1}$
NO_3^-	$0.5 - 5 \text{ mg L}^{-1}$	$\mathrm{NH_4}^+$	$0.05-0.5 \ mg \ L^{-1}$
Cl ⁻	$1-10 \ mg \ L^{-1}$		

5.2.3 Parameters analyzed

Participating laboratories are required to apply the analytical methods and data checking procedures specified in the technical documents in EANET to the analysis. The methods and procedures applied were specified in Technical Manual for Inland Aquatic Environment Monitoring in East Asia (2010).

Analytical methods specified in the manual are described in Table 5.4.

Table 5.4 Analytical methods specified in the Technical Manual

Parameter	Analytical method
рН	Glass electrode
EC	Conductivity cell
Alkalinity	Titration by Burette or Digital Burette with pH Meter
Aikaiiiity	(end-point pH4.8)
SO_4^{2-}	Ion Chromatography or Spectrophotometry
NO_3^-	ion Chromatography of Spectrophotometry
Cl ⁻	Ion Chromatography or Titration
Na^+	
\mathbf{K}^{+}	Ion Chromatography or Atomic Absorption / Flame (emission)
Ca^{2+}	photometry
Mg^{2+}	
NH ₄ ⁺	Ion Chromatography or Spectrophotometry (Indophenol blue)

5.2.4 Data Checking Procedures

a) Calculation of ion balance (R_1)

(1) Total anion (A) equivalent concentration (μ eq L⁻¹) is calculated by sum up the concentration of anions (C: μ mol L⁻¹) and alkalinity (ALK: μ eq L⁻¹). Alkalinity considered to be corresponded to bicarbonate ions (HCO₃⁻).

$$A$$
 (μeq L⁻¹) =Σ n C _{Ai} (μmol L⁻¹) = C (SO₄²⁻) + C (NO₃⁻) + C (Cl⁻) + (ALK) C _{Ai}: electric charge of ion and concentration (μmol L⁻¹) of anion "i".

(2) Total cation (C) equivalent concentration (μ eq L^{-1}) is calculated by sum up the concentration of all cations (C: μ mol L^{-1}).

$$C (\mu \text{eq/L}) = \sum_{i} C_{\text{Ci}} (\mu \text{mol/L}) = 10^{(6-\text{pH})} + C (\text{NH}_{4}^{+}) + C (\text{Na}^{+}) + C (\text{K}^{+}) + C (\text{Ca}^{2+}) + C (\text{Mg}^{2+})$$

 C_{Ci} : electric charge of ion and concentration (µmol L⁻¹) of cation "i".

(3) Calculation of ion balance (R_1)

$$R_1 = 100 \times (C - A) / (C + A) [\%]$$

(4) R_1 , which is calculated using the above equation, should be compared with standard values in Table 5.5. Re-measurement, check with standard solutions, and/or inspection of calibration curves should be undertaken, when R_1 is not within the range.

Table 5.5 Allowable ranges for R_1 in different concentration ranges

$(C+A)$ [μ eq L^{-1}]	R_1 [%]
< 50	+30 ~ -30
50 ~ 100	+15 ~ -15
>100	+8 ~ -8

b) Comparison between calculated and measured electrical conductivity (R_2)

(1) Total electric conductivity (Acalc) is calculated as follows;

$$\begin{aligned} \text{Acalc (mS m}^{-1}) &= \{349.7 \times 10^{(3-\text{pH})} + 80.0 \times C \text{ (SO}_4^{2-}) + 71.5 \times C \text{ (NO}_3^{-}) + 76.3 \times C \text{ (Cl}^{-}) \\ &+ 73.5 \times C \text{ (NH}_4^{+}) + 50.1 \times C \text{ (Na}^{+}) + 73.5 \times C \text{ (K}^{+}) + 59.8 \times C \text{ (Ca}^{2+}) \\ &+ 53.3 \times C \text{ (Mg}^{2+}) + 44.5 \times (ALK) \} / 10000 \end{aligned}$$

- C: Molar concentrations (µmol L^{-1}) of ions in the parenthesis; each constant value is ionic equivalent conductance at 25°C. Alkalinity considered to be corresponded to bicarbonate ions (HCO₃⁻).
- (2) Ratio (R_2) of calculations (Λ calc) to measurements (Λ calc) in electric conductivity is calculated as follows;

$$R_2 = 100 \times (\Lambda \text{calc} - \Lambda \text{meas}) / (\Lambda \text{calc} + \Lambda \text{meas}) [\%]$$

(3) R_2 , which is calculated using the above equation, is compared with standard values in Table 5.6. Re-measurement, check with standard solutions, and/or inspection of calibration curves are necessary, when R_2 is not within the range.

Table 5.6 Allowable ranges for R_2 in different concentration ranges

Λ meas[mS m ⁻¹]	R_2 [%]
< 0.5	+ 20 ~ -20
0.5 ~ 3	+13 ~ -13
> 3	+9 ~ -9
·	

5.3 Results

5.3.1 Outline of Results

Original data from the laboratories are shown in APPENDIX5-2 and APPENDIX5-3. Table 5.7 shows the summary of the analytical results. The outliers, defined as those results exceeding three standard deviations, were excluded from calculations in Table 5.7. Each average of submitted data agreed well with the corresponding prepared value/concentration.

Table 5.7 Summary of analytical results of the artificial inland aquatic environment sample (Reported data after outliers were removed)

Constituents	Prepared	Average	S.D.	N	Min.	Max.
рН	6.76	6.72	0.18	21	6.40	7.01
$EC (mS m^{-1})$	3.07	2.94	0.09	21	2.79	3.13
Alkalinity (meq L ⁻¹)	0.094	0.097	0.01	20	0.061	0.116
$SO_4^{2-} (mg L^{-1})$	3.89	3.76	0.16	20	3.49	4.18
$NO_3^- (mg L^{-1})$	0.49	0.47	0.05	19	0.30	0.53
$C\Gamma$ (mg L^{-1})	2.36	2.31	0.14	19	2.00	2.58
$Na^+ (mg L^{-1})$	2.38	2.39	0.12	20	2.20	2.65
$K^+ (mg L^{-1})$	0.58	0.54	0.05	20	0.40	0.59
$Ca^{2+} (mg L^{-1})$	1.35	1.39	0.11	20	1.23	1.60
${\rm Mg}^{2+} \ ({\rm mg}\ {\rm L}^{-1})$	0.60	0.57	0.05	20	0.45	0.65
$\mathrm{NH_4}^+ \ (\mathrm{mg}\ \mathrm{L}^{-1})$	0.24	0.21	0.03	20	0.14	0.26

(note) Prepared: value calculated from the amount of chemicals used for the preparation of samples.

The Data Quality Objectives (DQOs) of the EANET are specified in Chapter 6 of the Technical Manual. In this report, analytical data were compared with the prepared values/concentrations and evaluated by the criteria: A flag E is given to the value in the case that its deviation exceeds $\pm 15\%$ but not $\pm 30\%$, and the flag X is given to the value in the case that its deviation exceeds $\pm 30\%$.

Table 5.8 shows the number of flagged data for each parameter and Figure 5.1 shows the percentage of flagged data.

S.D.: standard deviation, N: number of data, Min: the minimum data, Max: the maximum data

Table 5.8 Number of flagged data

Flag*	pН	EC	Alkalinity	SO ₄ ²⁻	NO ₃	Cl ⁻	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}	NH ₄ ⁺	Total	Ratio
Е	0	0	4	0	0	2	0	2	2	2	4	16	7.2%
X	0	0	2	0	2	0	0	1	0	0	4	9	4.0%
Data within DQOs	21	21	15	20	18	18	20	17	18	18	12	198	88.8%
Flagged(%)	0.0	0.0	28.6	0.0	10.0	10.0	0.0	15.0	10.0	10.0	40.0	11.2	

Flag E: $15\% < |Deviation| \le 30\%$

Flag X: 30% < |Deviation|

Figure 5.1 Percentage of flagged data

The data flagged by "E" shared 7.2% of all reported data, and the data flagged by "X" shared 4.0% of all reported data of samples. The NH_4^+ results were flagged most (E and X), and their percentage was 40.0%.

The distribution of flagged data in each laboratory is shown in Table 5.9 and Figure 5.2.

Table 5.9 Number of flagged data in each laboratory

Number of flagged data	Number of laboratories	Ratio
0	9	43%
1	6	29%
2	2	10%
3	2	10%
4	1	5%
5	1	5%
6	0	0%
7	0	0%
8	0	0%
9	0	0%
Total	21	100%

50%
45%
40%
35%
30%
2016
2015

2016
2015

15%
10%
5%
0%
0 1 2 3 4 5 6 7 8 9

Number of flagged data in the laboratories

Figure 5.2 Distribution of laboratories with the number of flagged data

The percentage of the laboratories without flagged data was 43% in this attempt, while that in the last attempt (2015) was 43%. The maximum number of flagged data was five, which was submitted by one laboratory.

The Analytical data submitted by the participating laboratories are shown in Table 5.10 with flags.

Lab. ID	$^{ m bH}$	EC	Alkalinity	$\mathrm{SO_4}^{2^-}$	NO_3^-	CI_{-}	$\mathrm{Na}^{\scriptscriptstyle +}$	\mathbf{K}_{+}^{+}	Ca^{2+}	${ m Mg}^{2_+}$	$\mathbf{NH_4}^+$	R1	R2
		${ m mS~m}^{-1}$	meq L ⁻¹	${ m mgL^{-1}}$	${ m mgL^{-1}}$	$mg L^{-1}$	${\rm mgL}^{-1}$	${ m mgL^{-1}}$	$mg L^{-1}$	${ m mgL}^{-1}$	${ m mgL^{-1}}$	-	-
CN01	6.93	2.90	0.104	3.85	0.48	2.23	2.38	0.57	1.41	09.0	0.22	-1.04	2.26
CN02	6.81	2.92	0.101	3.75	0.48	2.21	2.35	0.59	1.38	0.58	0.20 E	-1.01	0.94
CN03	6.73	2.90	0.104	3.90	0.50	2.23	2.30	0.57	4.	0.59	0.21	-1.96	2.35
CN04	6.71	2.93	0.103	3.72	0.50	2.24	2.36	0.56	1.45	0.60	0.21	-0.28	1.53
ID01	6.84	2.88	0.116 E	3.61	0.47	2.14	2.20	0.53	1.60 E	0.65	0.15 X	-1.49	2.67
ID05	6.50	2.95	0.108 E	3.65	0.30 X	2.00 E	2.20	0.53	1.32	0.57	0.18 E	-2.71	-1.54
JP04	6.82	2.90	0.105	3.81	0.49	2.35	2.34	0.57	1.31	0.61	0.24	-2.77	2.31
JP12	98.9	2.93	0.113 E	3.70	0.51	2.14	2.28	0.57	1.28	0.55	0.26	-4.28	0.78
MY01	6.71	2.96	0.099	3.61	0.46	2.35	2.36	0.57	1.38	0.57	0.22	-0.51	0.34
MN01	6.4	2.86	0.061 X									ī	ı
PH01	6.85	2.79	0.087	3.78	0.43	2.39	2.42	0.56	1.25	0.54	0.21	-0.40	2.20
PH02	68.9	2.91	0.100	3.82	0.42	2.42	2.43	0.57	1.23	0.52	0.22	-3.64	1.18
RU01	6.84	2.99	0.090	4.18	0.47	2.24	2.38	0.55	1.38	0.53	0.23	-0.99	0.13
RU02	6.81	2.92	0.096	3.60	0.50	2.48	2.50	0.54	1.30	0.59	0.26	0.31	1.72
TH01	7.01	2.82	0.108 E	3.60	0.43	2.28	2.35	0.56	1.39	0.60	0.21	-1.44	3.17
TH02	6.75	2.89	0.087	3.87	0.48	2.36	2.48	0.59	1.29	0.59	0.17 X	0.57	1.29
VN01	6.40	3.03	0.090	3.49	9.4	2.58	2.34	0.57	1.33	0.60	0.20 E	0.14	-1.14
VN02	6.70	2.94	0.088	3.80	0.48	2.30	2.55	0.45 E	1.50	0.63	0.17 X	3.57	1.30
VN03	92.9	3.13	0.160 X	3.70	0.50	2.93 E	2.65	0.44 E	1.52	0.45 E	0.20 E	-13.30 I	4.37
VN04	6.51	3.12	0.084	4.01	0.81 X	2.52	2.59	0.56	1.51	0.55	0.14 X	0.80	-0.26
VN05	6.45	3.06	0.095	3.74	0.53	2.34	2.25	0.40 X	1.59 E	0.45 E	0.21	-2.19	-1.97
Expected value	9.76	3.07	0.094	3.89	0.49	2.36	2.38	0.58	1.35	0.60	0.24	ı	-

Flag E: 15% < |Deviation| ≤ 30% Flag X: 30% < |Deviation| I: Poor ion balance (R1) C: Rich Conductivity agreement (R2)

5.3.2 Evaluation of laboratories' performance (by analytical parameters)

The laboratories' performances are presented below in Figures from 5.3 to 5.13 for each analytical parameter. The results received from each laboratory are normalized by the prepared values to evaluate deviation from the prepared values.

Figure 5.3 Distribution of results for pH (normalized by the prepared value)

All the submitted data of pH were within DQO, 15%.

Figure 5.4 Distribution of results for EC (normalized by the prepared value)

All the submitted data of EC were within DQOs. Almost all of them were lower than the prepared value.

Figure 5.5 Distribution of results for alkalinity (normalized by prepared concentration)

Data of alkalinity from six laboratories were flagged and two of them were deviated more than 30%. The number of flagged data of alkalinity was three in last attempt. The flagged data increased.

Figure 5.6 Distribution of results for SO_4^{2-} (normalized by prepared concentration)

All the submitted data of SO_4^{2-} were within DQO, 15%. Almost all of them were lower than the prepared value.

Figure 5.7 Distribution of results for NO₃⁻ (normalized by prepared concentration)

Except for ID05 and VN04, all the submitted data of NO_3^- were within DQO, 15%. All the flagged data were deviated more than 30%.

Figure 5.8 Distribution of results for Cl⁻ (normalized by prepared concentration)

Except for ID05 and VN03, all the submitted data of Cl⁻ were within DQOs.

Figure 5.9 Distribution of results for Na⁺ (normalized by prepared concentration)

All the submitted data of Na⁺ were within DQOs.

Figure 5.10 Distribution of results for K^+ (normalized by prepared concentration)

Except for VN02, VN03 and VN05, all the submitted data of K⁺ were within DQOs. Almost all of them were lower than the prepared value.

Figure 5.11 Distribution of results for Ca²⁺ (normalized by prepared concentration)

Except for ID03 and VN05, all the submitted data of Ca²⁺ were within DQOs. The number of flagged data of Ca²⁺ was five in last attempt. The flagged data decreased.

Figure 5.12 Distribution of results for Mg²⁺ (normalized by prepared concentration)

Except for VN03 and VN05, all the submitted data of Mg^{2+} were within DQOs. The number of flagged data of Ca^{2+} was six in last attempt. The flagged data decreased.

Figure 5.13 Distribution of results for NH₄⁺ (normalized by prepared concentration)

Data of NH_4^+ from eight laboratories were flagged, and four of them were deviated more than 30%. Among 20 participating laboratories, 15 laboratories used ion chromatography, 4 laboratories used spectrophotometry (Indophenol) and 1 laboratory used spectrophotometry (other method) for the determination of NH_4^+ . Six laboratories with flagged data used ion chromatography, and another two laboratory used spectrophotometry (Indophenol) methods.

NH₄⁺ was the parameter that has the highest flagged percentage in this attempt.

5.3.3 Overall Evaluation

Calculated relative standard deviation of the whole sets of analytical data is presented in Figure 5.14 with comparison to last attempt (2015).

(Relative standard deviation (%) = Standard deviation / Average \times 100, Reported data after outliers were removed)

Figure 5.14 Relative standard deviation of each constituent

The relative standard deviation (RSD) of NO_3^- in 2016 became high than the last attempt. On the other hand, almost all RSDs of major ions became lower, especially Mg^{2+} .

5.3.4 Information on laboratories

Methodologies used

The percentages of laboratories using the recommended methods are shown in Figure 5.15, and the codes used for the various analytical methods are shown in Table 5.11 and 5.12.

Figure 5.15 Percentage of laboratories using the recommended methods

Table 5.11 List of methods

Code	Method
0	pH meter with electrode
1	Conductivity cell
2	Titration
3	Atomic absorption / Flame (emission) photometry
4	Ion chromatography
5	Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP - AES)
6	Calculation
7	Spectrophotometry
8	Spectrophotometry (Indophenol blue)
9	Inductively Coupled Plasma - Mass Spectrometry (ICP - MS)
10	Graphite Furnace Atomic Absorption spectrometry (GFAA)
11	Other method

Table 5.12 Analytical methods

Code	pН	EC	Alkalinity	SO ₄ ²⁻	NO ₃	Cl	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}	NH ₄ ⁺
0	21										
1		21									
2			21(6)			3(2)					
3							5	5(1)	5	5(1)	
4				17	15(1)	17	15	15(2)	15(2)	15(1)	15(6)
5											
6											
7				2	5(1)						1
8											4(2)
9											
10											
11				1							
Flagged E	0	0	4	0	0	2	0	2	2	2	4
Flagged E Flagged X	0	0	2	0	2	0	0	1	0	0	4

Recommended methods
(): Number of data, which flagged by "E" or "X"

The participating laboratories used recommended methods of the EANET except for measurement of SO_4^{2-} and NH_4^+ .

For the determination of anions/cations, most of the participating laboratories used ion chromatography, while some of them used other methods. Either data of all anions/cations obtained through ion chromatography included some flagged data. As a conclusion, there was no clear relationship between analytical methods and appearance of flagged data.

Staff (numbers and years of experience)

Number of staff in charge of measurement in each laboratory is shown in Table 5.13.

Table 5.13 Staff in charge of measurement

Unit: year

												5
Lab.ID	Total	pН	EC	Alkalinity	SO_4^{2-}	NO_3^-	Cl	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}	NH_4^+
CN01	1	A	A	A	A	A	A	A	A	A	A	A
CN02	3	Α	A	В	C	C	C	C	C	C	C	C
CN03	2	Α	A	A	В	В	В	В	В	В	В	В
CN04	1	Α	A	A	Α	A	A	A	A	A	Α	A
ID01	2	Α	A	A	В	В	В	В	В	В	В	В
ID05	5	Α	A	В	A	C	C	D	D	E	E	A
JP04	1	Α	A	A	A	A	A	A	A	A	A	A
JP12	3	Α	A	В	A	A	A	C	C	C	C	A
MY01	4	Α	A	В	C	C	C	D	D	D	D	D
MN01	2	Α	A	В								
PH01	1	Α	A	A	A	A	A	A	A	A	A	A
PH02	2	Α	A	A	В	В	В	В	В	В	В	В
RU01	3	Α	A	A	В	В	В	C	C	C	C	A
RU02	5	Α	В	A	C	D	A	E	E	E	E	C
TH01	1	Α	A	A	A	A	A	A	A	A	A	Α
TH02	2	Α	В	A	В	В	В	A	A	A	A	A
VN01	2	Α	A	В	В	В	В	В	В	В	В	В
VN02	3	Α	A	В	C	C	C	C	C	C	C	C
VN03	3	Α	A	В	В	A	A	C	C	Α	C	Α
VN04	3	Α	A	В	C	С	С	C	С	C	C	C
VN05	4	Α	A	В	C	D	C	C	С	С	С	С

Letters represent individuals of staff in each laboratory who are in charge of measurement.

Reverse mesh: "E" or "X" in sample flagged Data.

In many laboratories, 2 or 3 persons analyzed the sample, and usually they shared the works according to the methods such as pH, EC and ionic items.

There was no clear relationship between data quality and the number of staff in charge of measurement.

Years of experience of each laboratory are shown in Table 5.14.

^{-:} no information blank: not analyzed

Table 5.14 Years of experience

										Unit	: year
Lab.ID	pН	EC	Alkalinity	SO ₄ ²⁻	NO_3^-	Cl	Na^+	K^{+}	Ca ²⁺	Mg^{2+}	NH_4^+
CN01	2	2	2	2	2	2	2	2	2	2	2
CN02	19	11	11	11	11	11	11	11	11	11	11
CN03	21	21	21	6	6	6	6	6	6	6	6
CN04	10	10	10	10	10	10	10	10	10	10	10
ID01	5	5	5	16	16	16	16	16	16	16	16
ID05	10	10	12	10	3	3	8	8	8	8	10
JP04	14	14	14	14	14	14	14	14	14	14	14
JP12	4	4	5	4	4	4	16	16	16	16	4
MY01	3	3	4	1	1	1	10	10	10	10	10
MN01	15	15	18								
PH01	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
PH02	2	2	2	6	6	6	6	6	6	6	6
RU01	23	23	23	21	21	21	31	31	31	31	23
RU02	56	38	56	31	2	56	25	25	25	25	31
TH01	19	19	19	19	19	19	19	19	19	19	19
TH02	19	13	19	13	13	13	19	19	19	19	19
VN01	3	3	24	24	24	24	24	24	24	24	24
VN02	10	10	12	12	12	12	12	12	12	12	12
VN03	2	2	8	8	2	2	4	4	2	4	2
VN04	13	13	13	11	11	11	11	11	11	11	11
VN05	4	4	5	13	12	13	13	13	13	13	13

Data were Flagged by "E" or "X" in sample

blank: not analyzed

There was no clear relationship between data quality and years of experience.

¹ year means experienced with one year or less.

^{-:} no information

5.4. Comparison with past surveys

The inter-laboratory comparison projects of the EANET have been carried out 17 times, and the results showing the percentage of flagged data and the percentage of data that satisfied the DQOs are shown in Figure 5.16.

Figure 5. 16 Comparison of the results from the inter-laboratory comparison projects

The percentage of data satisfied the DQOs decreased from 2012 to 2014, but it increased slightly in this attempt. The percentage of each data in this attempt was almost same as the last attempt.

The values/concentrations for each parameter from the 1st to 17th project were compared with the percentage of flagged data in Figure 5.17.

Figure 5.17 Concentrations and the percentage of flagged data for each parameter in inter-laboratory comparison projects

There was no flagged data in pH, EC, SO_4^{2-} and Na^+ in this attempt. The analyses of pH, SO_4^{2-} , Na^+ , Ca^{2+} and Mg^{2+} were improved. In this attempt, flagged percentages of alkalinity, Cl^- and NH_4^+ became higher than the last attempt. It may be caused by low concentrations and condition of instrument, especially ion chromatography column.

Furthermore, the percentage of flagged data was larger in NH_4^+ than for other parameters in every survey except for the 1^{st} - 3^{rd} project. The percentage of flagged Ca^{2+} in the 7^{th} - 11^{th} project was also comparatively high. Therefore, in the inland water analysis, it is necessary to pay more attention to NH_4^+ and Ca^{2+} .

5.5. Recommendations for improvement

The following fundamental matters should be taken into account in measurement, analysis, and data control processes for improvement of precision.

5.5.1 Measurement and Analysis

1) General

- ► Clearance from contamination of the apparatus, materials and reagents used for measurement and analysis must be confirmed beforehand.
- ▶ Blank values of target substances should be as low as possible.
- ► Measurement and analysis should be conducted by persons who are well trained.
- ► To maintain high analytical quality, SOP (Standard Operating Procedures) must be prepared for the management of apparatus, reagents, and procedure of operation.

2) Deionized water

► Water with conductivity less than 0.15 mS m⁻¹ is acceptable for measurements, analyses, dilution of precipitation samples and cleaning.

3) Certified materials and certified samples

- ► The measurements are evaluated by comparison with measured results of samples and certified materials.
- ► In order to assure the reliability of measurements, the certified solutions and materials should be used as much as possible.

4) Pretreatment of samples at analytical laboratory

- ► Conductivity and pH should be measured as soon as possible after sample receiving, and checking agreement of samples and sample list.
- ► Effort should be made to start analysis of the other parameters within a week of sample arrival in the laboratory and to complete the data sets by measuring EC, pH and all other chemical parameters.

5) Calibration of analytical instruments

► Each of the analytical instruments must be calibrated when they are used, and they should be adjusted as appropriate.

5.5.2 Evaluation of reliability

1) Sensitivity fluctuation of analytical instruments

When numerous samples are measured, measurements should only be continued after confirming that the sensitivity fluctuation is within the prescribed range.

For example, in ion chromatography

- ► A new calibration should be performed before the measurements are reached to over 30 samples.
- ▶ <u>Reference materials</u> should be measured after the calibration. It should also be done once or twice before the next calibration.
- ► Control charts should be applied for the measurement of the reference materials.
- ➤ Standard solutions and reference solutions must be prepared from different stock solutions in order to be independent.
- ▶ If the results of the control solutions are outside of 3 standard deviations, or out of 15 % from the expected value, the reasons should be found and corrections should be made, and reference solution should be measured again.
- ▶ If the retention time changes slowly while the separator column is deteriorating, then adequate actions should be taken as appropriate. If it changes significantly in a relatively short time, the reasons should be found and removed, then the reference material must be measured again.

5.5.3 Data control

1) Data checks by the analytical laboratories

- ▶ When the sensitivity of instruments is not stable, when the results of duplicate analyses or re-measurements are significantly different, or when the percentage of a theoretical value to that for determined data in ion balances and electrical conductivity is significantly different from 1.0, measurement should be repeated since reliability is low.
- ► When samples seem to be obviously contaminated, these data should be treated as unrecorded data.
- ▶ Abnormal or unrecorded data can corrupt research results. So, careful checks are needed to avoid data of questionable quality. When abnormal or unrecorded data are detected, the process should be carefully reviewed to prevent the occurrence of the same problem in the future.

References

EANET (2000). *Technical Manual for Monitoring on Inland Aquatic Environment in East Asia*. Acid Deposition and Oxidant Research Center, Niigata, Japan, 46p.

EANET (2000). Quality Assurance/Quality Control (QA/QC) Program for Monitoring on Inland Aquatic Environment in East Asia. Acid Deposition and Oxidant Research Center, Niigata, Japan, 22p.

EANET (2010). *Technical Manual for Inland Aquatic Environment Monitoring in East Asia -2010*. Asia Center for Air Pollution Research, Niigata, Japan, 124p.

Appendix Table 5.1 Results submitted by the laboratories

	Ηd	EC	Alkalinity	$\mathrm{SO_4}^{2-}$	NO_3^-		$\mathrm{Na}^{_{+}}$	\mathbf{K}^{+}	Ca^{2+}	${ m Mg}^{2_+}$	NH_4^+
Lab. ID	- (1	$(mS m^{-1})$	$(\text{meq } L^{-1})$	$({\rm mg}\ {\rm L}^{-1})$	$(mg L^{-1})$	$(mg L^{-1})$	(mg L^{-1})	(mg L^{-1})	$(mg L^{-1})$	$({\rm mg}\ {\rm L}^{-1})$	(mg L^{-1})
CN01	6.93	2.90	0.104	3.85	0.48	2.23	2.38	0.57	1.41	09.0	0.22
CN02	6.81	2.92	0.101	3.75	0.48	2.21	2.35	0.59	1.38	0.58	0.20
CN03	6.73	2.90	0.104	3.90	0.50	2.23	2.30	0.57	1.4	0.59	0.21
CN04	6.71	2.93	0.103	3.72	0.50	2.24	2.36	0.56	1.45	09.0	0.21
ID01	6.84	2.88	0.116	3.61	0.47	2.14	2.20	0.53	1.60	0.65	0.15
ID05	6.50	2.95	0.108	3.65	0.30	2.00	2.20	0.53	1.32	0.57	0.18
JP04	6.82	2.90	0.105	3.81	0.49	2.35	2.34	0.57	1.31	0.61	0.24
JP12	88.9	2.93	0.113	3.70	0.51	2.14	2.28	0.57	1.28	0.55	0.26
MY01	6.71	2.96	0.099	3.61	0.46	2.35	2.36	0.57	1.38	0.57	0.22
MN01	6.44	2.86	0.061	0.00	0.00	0.00					
PH01	6.85	2.79	0.087	3.78	0.43	2.39	2.42	0.56	1.25	0.54	0.21
PH02	68.9	2.91	0.100	3.82	0.42	2.42	2.43	0.57	1.23	0.52	0.22
RU01	6.84	2.99	0.090	4.18	0.47	2.24	2.38	0.55	1.38	0.53	0.23
RU02	6.81	2.92	0.096	3.60	0.50	2.48	2.50	0.54	1.30	0.59	0.26
TH01	7.01	2.82	0.108	3.60	0.43	2.28	2.35	0.56	1.39	09.0	0.21
TH02	6.75	2.9	0.087	3.87	0.48	2.36	2.48	0.59	1.29	0.59	0.17
VN01	6.40	3.0	0.090	3.49	0.44	2.58	2.34	0.57	1.33	09.0	0.20
VN02	6.70	2.9	0.088	3.80	0.48	2.30	2.55	0.45	1.50	0.63	0.17
VN03	6.56	3.1	0.160	3.70	0.50	2.93	2.65	0.44	1.52	0.45	0.20
VN04	6.51	3.1	0.084	4.01	0.81	2.52	2.59	0.56	1.51	0.55	0.14
VN05	6.45	3.06	0.10	3.74	0.53	2.34	2.25	0.40	1.59	0.45	0.21
Expected value	92.9	3.07	0.094	3.89	0.49	2.36	2.38	0.58	1.35	09.0	0.24
Number of data	21	21	21	20	20	20	20	20	20	20	20
Average	6.72	2.94	0.10	3.76	0.48	2.34	2.39	0.54	1.39	0.57	0.21
Minimum	6.40	2.79	0.06	3.49	0.30	2.00	2.20	0.40	1.23	0.45	0.14
Maximum	7.01	3.13	0.16	4.18	0.81	2.93	2.65	0.59	1.60	0.65	0.26
blank: not analyzed											

Appendix Table 5.2 Data normalized by the prepared value

(Original data / Expected Value – 1) $\times 100$ (%)

	Hd	EC	Alkalinity	$\mathrm{SO_4}^{2-}$	NO_3^-	\Box	$\mathrm{Na}^{\scriptscriptstyle +}$	\mathbf{K}_{+}^{+}	Ca^{2+}	${ m Mg}^{2_+}$	NH_4^+
Lab. ID	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
CN01	2.6	-5.4	10.9	-1.1	-2.9	-5.5	0.0	9.0-	4.0	-0.1	-10.7
CN02	0.8	4.8	8.0	-3.6	-2.2	-6.2	-1.3	1.7	1.8	-2.9	-18.9
CN03	-0.4	-5.5	11.2	0.3	1.8	-5.5	-3.2	9.0-	6.2	-1.8	-12.1
CN04	-0.7	4.5	8.6	4.4	1.8	-5.0	9.0-	-3.5	6.9	-0.1	-12.1
ID01	1.3	-6.2	23.3	-7.2	4.9	-9.3	-7.3	-8.1	18.3	8.2	-36.8
ID05	-3.8	-3.9	15.1	-6.1	-38.9	-15.3	-7.4	-8.1	-2.4	-4.6	-25.8
JP04	0.0	-5.4	12.3	-2.0	-0.2	-0.6	-1.7	9.0-	-3.2	1.5	-2.4
JP12	1.8	-4.6	20.5	4.8	3.9	-9.3	4.1	-1.2	-5.4	-8.0	7.2
MY01	-0.7	-3.6	5.5	-7.2	-6.3	-0.5	-0.7	-1.2	2.0	-4.6	-9.3
PH01	1.4	-9.1	-7.3	-2.7	-13.1	1.4	1.7	-2.3	-7.3	9.6-	-13.4
PH02	2.0	-5.3	9.9	-1.7	-14.5	2.4	2.1	-1.8	-8.8	-13.0	-9.3
RU01	1.2	-2.6	-4.1	7.5	4.3	-5.1	0.1	-4.6	2.0	-11.3	-5.2
RU02	0.8	-4.9	2.3	-7.4	1.8	5.1	5.2	-6.4	-3.9	-1.3	7.2
TH01	3.8	-8.1	15.1	-7.4	-12.4	-3.4	-1.1	-2.9	2.8	0.4	-13.4
TH02	-0.1	-6.0	-6.9	9.0-	-3.3	0.0	4.5	2.2	-5.0	-2.1	-30.3
VN01	-5.3	-1.4	-4.1	-10.2	-10.4	9.1	-1.5	9.0-	-1.9	-0.1	-17.6
VN02	-0.8	4.3	-5.8	-2.2	-2.2	-2.4	7.1	-22.6	10.9	4.9	-31.3
VN03	-2.9	2.1	70.6	4.8	1.8	24.1	11.4	-23.7	12.4	-24.1	-17.6
VN04	-3.6	1.7	-10.5	3.2	64.3	6.7	9.1	-3.5	11.4	-8.0	-40.9
VN05	-4.5	-0.2	1.3	-3.9	8.0	-1.0	-5.2	-30.6	17.5	-24.1	-14.8
Minimum	-5.3	-9.1	-35.0	-10.2	-38.9	-15.3	-7.4	-30.6	-8.8	-24.1	-40.9
Maximum	3.8	2.1	70.6	7.5	64.3	24.1	11.4	2.2	18.3	8.2	7.2
Average	-0.5	4.2	9.9	-3.3	-1.6	-1.0	0.4	-5.9	2.9	-5.0	-15.4

6. ACKNOWLEDGEMENT

ACAP wishes to thank Toyama Prefecture for their cooperation in the collection of soil samples used for the Inter-laboratory Comparison Project on soil.

7. CONTACT INFORMATION

Please address all inquiries, comments and suggestions to:

Dr. Ken YAMASHITA

Head, Data Management Department

Asia Canter for Air Pollution Research (ACAP)

1182, Sowa, Nishi-ku, Niigata-shi, 950-2144, Japan

Tel: +81 25-263-0562 Fax: +81 25-263-0567

E-mail: eanetdata@acap.asia

URL: http://www.eanet.asia